二维前缀和暴力思路,时间复杂度
class Solution {
public:
int numSubmatrixSumTarget(vector<vector<int>>& matrix, int target) {
int s[110][110];
int n = matrix.size(), m = matrix[0].size();
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
s[i+1][j+1] = matrix[i][j] + s[i+1][j] + s[i][j+1] - s[i][j];
int res = 0;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
for(int x = 1; x <= i; x++)
{
for(int y = 1; y <= j; y++)
{
int t = s[i][j] - s[x-1][j] - s[i][y-1] + s[x-1][y-1];
if(t == target) res++;
}
}
}
}
return res;
}
};
哈希表+前缀和线性优化,最优的一个做法的时间复杂度
class Solution {
public:
int solve(vector<int>& num, int target)
{
int cnt = 0, pre = 0, len = num.size();
unordered_map<int, int> hash;
hash[0] = 1;
for(int i = 0; i < len; i++)
{
pre += num[i];
if(hash.find(pre - target) != hash.end())
cnt += hash[pre-target];
hash[pre]++;
}
return cnt;
}
int numSubmatrixSumTarget(vector<vector<int>>& matrix, int target) {
int n = matrix.size(), m = matrix[0].size();
int x = min(n,m), y = max(n,m);
int s[x+1][y+1], a[x+1][y+1];
if(n > m)
{
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
a[j][i] = matrix[i][j];
}
else{
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
a[i][j] = matrix[i][j];
}
int res = 0;
for(int i = 0; i < x; i++)
{
vector<int> sum(y);
for(int j = i; j < x; j++)
{
for(int k = 0; k < y; k++)
sum[k] += a[j][k];
res += solve(sum, target);
}
}
return res;
}
};