エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント5件
- 注目コメント
- 新着コメント

注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Day-107 Pythonの高速画像処理ライブラリLyconが速い - CC56
何ヶ月か前にTwitterのタイムラインに流れてきたのですが、それっきり話題を聞かないので検証してみるこ... 何ヶ月か前にTwitterのタイムラインに流れてきたのですが、それっきり話題を聞かないので検証してみることにしました。 ちなみに、個人的に普段使って慣れているのは、癖が少なくて扱いやすい scikit-image です。 (OpenCVはBGRがデフォルトなので基本的に避けたいですし、PILは癖が強めなのであまり好きではないです) 高速の画像処理ライブラリを使うモチベは、もちろん Kaggle です。 特に画像の読み込みが速いと、時間短縮に直結するので個人的に嬉しいです。 Lyconとは C++で書かれたPython用の軽量画像処理ライブラリらしいです。 PyPI にあるので pip install ですぐに使えます。(一応依存関係も気にしなきゃいけないかも) github.com 性能の割にスターが控えめな気がする。 試しに使ってみる 多少の実戦を仮定して、Kaggle の Notebo
2020/07/24 リンク