{"id":"https://openalex.org/W4403953631","doi":"https://doi.org/10.7717/peerj-cs.2410","title":"A novel recursive sub-tensor hyperspectral compressive sensing of plant leaves based on multiple arbitrary-shape regions of interest","display_name":"A novel recursive sub-tensor hyperspectral compressive sensing of plant leaves based on multiple arbitrary-shape regions of interest","publication_year":2024,"publication_date":"2024-10-31","ids":{"openalex":"https://openalex.org/W4403953631","doi":"https://doi.org/10.7717/peerj-cs.2410"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.7717/peerj-cs.2410","pdf_url":null,"source":{"id":"https://openalex.org/S4210178049","display_name":"PeerJ Computer Science","issn_l":"2376-5992","issn":["2376-5992"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320104","host_organization_name":"PeerJ, Inc.","host_organization_lineage":["https://openalex.org/P4310320104"],"host_organization_lineage_names":["PeerJ, Inc."],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://doi.org/10.7717/peerj-cs.2410","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100448015","display_name":"Zhuo Li","orcid":"https://orcid.org/0000-0001-6388-3398"},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"funder","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhuo Li","raw_affiliation_strings":["College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, China"],"affiliations":[{"raw_affiliation_string":"College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, China","institution_ids":["https://openalex.org/I50760025"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101495395","display_name":"Ping Xu","orcid":"https://orcid.org/0000-0002-7761-6490"},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"funder","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ping Xu","raw_affiliation_strings":["College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, China"],"affiliations":[{"raw_affiliation_string":"College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, China","institution_ids":["https://openalex.org/I50760025"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083415107","display_name":"Yuewei Jia","orcid":"https://orcid.org/0000-0002-7819-6707"},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"funder","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuewei Jia","raw_affiliation_strings":["College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, China"],"affiliations":[{"raw_affiliation_string":"College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, China","institution_ids":["https://openalex.org/I50760025"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065901005","display_name":"Kenan Chen","orcid":null},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"funder","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ke-nan Chen","raw_affiliation_strings":["College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, China"],"affiliations":[{"raw_affiliation_string":"College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, China","institution_ids":["https://openalex.org/I50760025"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101923286","display_name":"Bin Luo","orcid":"https://orcid.org/0000-0001-7007-2489"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bin Luo","raw_affiliation_strings":["Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5109487826","display_name":"Lingyun Xue","orcid":"https://orcid.org/0000-0002-8089-8548"},"institutions":[{"id":"https://openalex.org/I50760025","display_name":"Hangzhou Dianzi University","ror":"https://ror.org/0576gt767","country_code":"CN","type":"funder","lineage":["https://openalex.org/I50760025"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lingyun Xue","raw_affiliation_strings":["College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, China"],"affiliations":[{"raw_affiliation_string":"College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang Province, China","institution_ids":["https://openalex.org/I50760025"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1395,"currency":"USD","value_usd":1395},"apc_paid":{"value":1395,"currency":"USD","value_usd":1395},"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":"10","issue":null,"first_page":"e2410","last_page":"e2410"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9924,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.86022234},{"id":"https://openalex.org/C155281189","wikidata":"https://www.wikidata.org/wiki/Q3518150","display_name":"Tensor (intrinsic definition)","level":2,"score":0.56268466},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.46026522},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3977817},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.38516393},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.37945586},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35495257},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.3427307},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.33478206},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3325796},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.2454116}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.7717/peerj-cs.2410","pdf_url":null,"source":{"id":"https://openalex.org/S4210178049","display_name":"PeerJ Computer Science","issn_l":"2376-5992","issn":["2376-5992"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320104","host_organization_name":"PeerJ, Inc.","host_organization_lineage":["https://openalex.org/P4310320104"],"host_organization_lineage_names":["PeerJ, Inc."],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.7717/peerj-cs.2410","pdf_url":null,"source":{"id":"https://openalex.org/S4210178049","display_name":"PeerJ Computer Science","issn_l":"2376-5992","issn":["2376-5992"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320104","host_organization_name":"PeerJ, Inc.","host_organization_lineage":["https://openalex.org/P4310320104"],"host_organization_lineage_names":["PeerJ, Inc."],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Climate action","score":0.73,"id":"https://metadata.un.org/sdg/13"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"No. 62273125"}],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W2014374676","https://openalex.org/W2024165284","https://openalex.org/W2036003376","https://openalex.org/W2056352756","https://openalex.org/W2066724429","https://openalex.org/W2096854583","https://openalex.org/W2129638195","https://openalex.org/W2158755893","https://openalex.org/W2163957348","https://openalex.org/W2168625863","https://openalex.org/W2373296583","https://openalex.org/W2509021534","https://openalex.org/W2607476064","https://openalex.org/W2613906287","https://openalex.org/W2768095459","https://openalex.org/W2792613478","https://openalex.org/W2894720251","https://openalex.org/W3000090361","https://openalex.org/W3140205757","https://openalex.org/W3215338887","https://openalex.org/W416631514","https://openalex.org/W4378071779","https://openalex.org/W4399849661"],"related_works":["https://openalex.org/W4250051149","https://openalex.org/W4230131218","https://openalex.org/W3209970181","https://openalex.org/W3034375524","https://openalex.org/W2404757046","https://openalex.org/W2385371209","https://openalex.org/W2083270190","https://openalex.org/W2072166414","https://openalex.org/W2070598848","https://openalex.org/W2060875994"],"abstract_inverted_index":{"Plant":[0],"hyperspectral":[1,39],"images":[2],"(HSIs)":[3],"contain":[4],"valuable":[5],"information":[6,67],"for":[7,43,227,253],"agricultural":[8],"disaster":[9],"prediction,":[10],"biomass":[11],"estimation,":[12],"and":[13,55,79,103,140,191,221,236],"other":[14,175,260],"applications.":[15],"However,":[16],"they":[17],"also":[18],"include":[19],"a":[20,35,62],"lot":[21],"of":[22,65,75,131,203,243],"irrelevant":[23],"background":[24,66,154],"information,":[25],"which":[26],"wastes":[27],"storage":[28,82],"resources.":[29],"In":[30,205],"this":[31],"paper,":[32],"we":[33],"propose":[34],"novel":[36],"recursive":[37,49,120],"sub-tensor":[38,50,135],"compressive":[40,51],"sensing":[41,52],"method":[42,47,86,162,179,211,248],"plant":[44,255],"leaves.":[45],"This":[46],"uses":[48],"to":[53,68,110,127,148,174,194],"compress":[54],"reconstruct":[56],"each":[57],"arbitrary-shape":[58],"leaf":[59,77,113,151,256],"region,":[60],"discarding":[61],"large":[63],"amount":[64],"achieve":[69,213],"the":[70,76,92,98,112,116,119,160,200,206,209,246,259],"best":[71],"possible":[72],"reconstruction":[73,166],"performance":[74,252],"region":[78],"significantly":[80,214],"reduce":[81],"space.":[83],"The":[84,177],"proposed":[85,161,178,210,247],"involves":[87],"several":[88],"key":[89],"steps.":[90],"Firstly,":[91],"optimal":[93],"band":[94],"is":[95,108,125,136],"determined":[96],"using":[97],"spatial":[99],"spectral":[100,207,224],"decorrelation":[101],"criterion,":[102],"its":[104],"corresponding":[105],"mask":[106],"image":[107,165],"used":[109],"extract":[111],"regions":[114],"from":[115],"background.":[117],"Secondly,":[118],"maximum":[121],"inscribed":[122],"rectangle":[123],"algorithm":[124],"applied":[126],"obtain":[128],"rectangular":[129],"sub-tensors":[130,144],"leaves":[132],"recursively.":[133],"Each":[134],"then":[137],"individually":[138],"compressed":[139],"reconstructed.":[141],"Finally,":[142],"all":[143],"can":[145,180,212],"be":[146],"reconstructed":[147,254],"form":[149],"complete":[150],"HSIs":[152,257],"without":[153],"information.":[155],"Experimental":[156],"results":[157],"demonstrate":[158],"that":[159],"achieves":[163,249],"superior":[164],"quality":[167],"at":[168,199],"extremely":[169],"low":[170],"sampling":[171,201],"rates":[172],"compared":[173,193],"methods.":[176,261],"improve":[181],"average":[182],"Peak":[183],"Signal-to-Noise":[184],"Ratio":[185],"(PSNR)":[186],"values":[187,220],"by":[188],"about":[189],"3.04%":[190],"0.74%":[192],"Tensor":[195],"Compressive":[196],"Sensing":[197],"(TCS)":[198],"rate":[202],"2%.":[204],"domain,":[208],"smaller":[215],"Spectral":[216],"Angle":[217],"Mapper":[218],"(SAM)":[219],"relatively":[222],"lower":[223],"indices":[225],"errors":[226],"Double":[228],"Difference,":[229],"Triangular":[230],"Vegetation":[231],"Index,":[232,235],"Leaf":[233],"Chlorophyll":[234],"Modified":[237],"Normalized":[238],"Difference":[239],"680":[240],"than":[241,258],"those":[242],"TCS.":[244],"Therefore,":[245],"better":[250],"compression":[251]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403953631","counts_by_year":[],"updated_date":"2025-04-10T23:19:44.929540","created_date":"2024-11-01"}