{"id":"https://openalex.org/W4241213162","doi":"https://doi.org/10.7287/peerj.preprints.27361v1","title":"Sample-level sound synthesis with recurrent neural networks and conceptors","display_name":"Sample-level sound synthesis with recurrent neural networks and conceptors","publication_year":2018,"publication_date":"2018-11-19","ids":{"openalex":"https://openalex.org/W4241213162","doi":"https://doi.org/10.7287/peerj.preprints.27361v1"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.7287/peerj.preprints.27361v1","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://doi.org/10.7287/peerj.preprints.27361v1","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5063340885","display_name":"Chris Kiefer","orcid":"https://orcid.org/0000-0002-3329-1938"},"institutions":[{"id":"https://openalex.org/I162608824","display_name":"University of Sussex","ror":"https://ror.org/00ayhx656","country_code":"GB","type":"education","lineage":["https://openalex.org/I162608824"]}],"countries":["GB"],"is_corresponding":true,"raw_author_name":"Chris Kiefer","raw_affiliation_strings":["Experimental Music Technologies Lab, Department of Music, University of Sussex, Brighton, United Kingdom"],"affiliations":[{"raw_affiliation_string":"Experimental Music Technologies Lab, Department of Music, University of Sussex, Brighton, United Kingdom","institution_ids":["https://openalex.org/I162608824"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5063340885"],"corresponding_institution_ids":["https://openalex.org/I162608824"],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":62},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12611","display_name":"Neural Networks and Reservoir Computing","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12611","display_name":"Neural Networks and Reservoir Computing","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9867,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9555,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/morphing","display_name":"Morphing","score":0.5315777},{"id":"https://openalex.org/keywords/interpolation","display_name":"Interpolation","score":0.51679766},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.43763644}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7764725},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.6538596},{"id":"https://openalex.org/C50637493","wikidata":"https://www.wikidata.org/wiki/Q1136781","display_name":"Morphing","level":2,"score":0.5315777},{"id":"https://openalex.org/C137800194","wikidata":"https://www.wikidata.org/wiki/Q11713455","display_name":"Interpolation (computer graphics)","level":3,"score":0.51679766},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.43763644},{"id":"https://openalex.org/C132459708","wikidata":"https://www.wikidata.org/wiki/Q744069","display_name":"Extrapolation","level":2,"score":0.4318371},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.38476765},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.32151014},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.29779255},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.101382196},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08928838},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.7287/peerj.preprints.27361v1","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://sro.sussex.ac.uk/id/eprint/84328/4/peerj-cs-205.pdf","pdf_url":"https://sussex.figshare.com/articles/journal_contribution/Sample-level_sound_synthesis_with_recurrent_neural_networks_and_conceptors/23469161/1/files/41177858.pdf","source":{"id":"https://openalex.org/S4306400129","display_name":"Sussex Research Online (University of Sussex)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I162608824","host_organization_name":"University of Sussex","host_organization_lineage":["https://openalex.org/I162608824"],"host_organization_lineage_names":["University of Sussex"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"acceptedVersion","is_accepted":true,"is_published":false},{"is_oa":true,"landing_page_url":"https://figshare.com/articles/journal_contribution/Sample-level_sound_synthesis_with_recurrent_neural_networks_and_conceptors/23469161","pdf_url":"https://figshare.com/articles/journal_contribution/Sample-level_sound_synthesis_with_recurrent_neural_networks_and_conceptors/23469161/1/files/41177858.pdf","source":{"id":"https://openalex.org/S4306402621","display_name":"INDIGO (University of Illinois at Chicago)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I39422238","host_organization_name":"University of Illinois Chicago","host_organization_lineage":["https://openalex.org/I39422238"],"host_organization_lineage_names":["University of Illinois Chicago"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.7287/peerj.preprints.27361v1","pdf_url":null,"source":null,"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4385170164","https://openalex.org/W4237321385","https://openalex.org/W4236870338","https://openalex.org/W3151495635","https://openalex.org/W2578422401","https://openalex.org/W2560420848","https://openalex.org/W2168645698","https://openalex.org/W2167211785","https://openalex.org/W2052829037","https://openalex.org/W1679315481"],"abstract_inverted_index":{"Conceptors":[0,33],"are":[1,91,103,124,131,205,215,258],"a":[2,43,64,110,114,127,142],"recent":[3],"development":[4],"in":[5,70,141,221,262],"the":[6,17,227,247],"field":[7],"of":[8,19,26,45,55,85,101,144,159,184,229,246,251],"reservoir":[9],"computing;":[10],"they":[11],"can":[12,150,173,192],"be":[13,80,174],"used":[14,140,175],"to":[15,79,105,209],"influence":[16],"dynamics":[18],"recurrent":[20],"neural":[21],"networks":[22],"(RNNs),":[23],"enabling":[24,162],"generation":[25],"arbitrary":[27,56],"patterns":[28,50,57,108,122],"based":[29,88,96],"on":[30,89,97],"training":[31,233],"data.":[32],"allow":[34],"interpolation":[35],"and":[36,40,53,73,157,179,212,223,255],"extrapolation":[37],"between":[38,118],"patterns,":[39],"also":[41,216],"provide":[42],"system":[44],"boolean":[46,155],"logic":[47,156],"for":[48,68,135,176,180,232],"combining":[49],"together.":[51],"Generation":[52],"manipulation":[54,158],"using":[58,200],"conceptors":[59,90,102],"has":[60,77],"significant":[61],"potential":[62,250],"as":[63],"sound":[65,86,145,196,202,236,248],"synthesis":[66,87,146,197,249],"method":[67],"applications":[69],"computer":[71],"music":[72],"procedural":[74],"audio":[75],"but":[76],"yet":[78],"explored.":[81],"Two":[82],"novel":[83],"methods":[84],"introduced.":[92],"Conceptular":[93],"Synthesis":[94],"is":[95],"granular":[98],"synthesis;":[99],"sets":[100],"trained":[104],"recall":[106],"varying":[107],"from":[109],"single":[111],"RNN,":[112],"then":[113],"runtime":[115,171],"mechanism":[116],"switches":[117],"them,":[119],"generating":[120],"short":[121,201],"which":[123],"recombined":[125],"into":[126],"longer":[128,235],"sound.":[129,264],"Conceptillators":[130],"trainable,":[132],"pitch-controlled":[133],"oscillators":[134],"harmonically":[136],"rich":[137],"waveforms,":[138],"commonly":[139],"variety":[143],"applications.":[147],"Both":[148],"systems":[149],"exploit":[151],"conceptor":[152],"pattern":[153],"morphing,":[154],"RNN":[160,170],"dynamics,":[161],"new":[163],"creative":[164],"sonic":[165],"possibilities.":[166],"Experiments":[167],"reveal":[168],"how":[169,189],"parameters":[172],"pitch-independent":[177],"timestretching":[178],"precise":[181],"frequency":[182],"control":[183],"cyclic":[185],"waveforms.":[186],"They":[187],"show":[188],"these":[190,230],"techniques":[191,239],"create":[193],"highly":[194],"malleable":[195],"models,":[198],"trainable":[199],"samples.":[203,237],"Limitations":[204],"revealed":[206],"with":[207,234],"regards":[208],"reproduction":[210],"quality,":[211],"pragmatic":[213],"limitations":[214],"shown,":[217],"where":[218],"exponential":[219],"rises":[220],"computation":[222],"memory":[224],"requirements":[225],"preclude":[226],"use":[228],"models":[231],"The":[238],"presented":[240],"here":[241],"represent":[242],"an":[243],"initial":[244],"exploration":[245],"conceptors;":[252],"future":[253],"possibilities":[254,261],"research":[256],"questions":[257],"outlined,":[259],"including":[260],"generative":[263]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4241213162","counts_by_year":[],"updated_date":"2024-12-10T16:41:17.233189","created_date":"2022-05-12"}