{"id":"https://openalex.org/W3003938095","doi":"https://doi.org/10.5753/sbbd.2019.8827","title":"An\u00e1lise de Hiperpar\u00e2metros em Aplica\u00e7\u00f5es de Aprendizado Profundo por meio de Dados de Proveni\u00eancia","display_name":"An\u00e1lise de Hiperpar\u00e2metros em Aplica\u00e7\u00f5es de Aprendizado Profundo por meio de Dados de Proveni\u00eancia","publication_year":2019,"publication_date":"2019-10-07","ids":{"openalex":"https://openalex.org/W3003938095","doi":"https://doi.org/10.5753/sbbd.2019.8827","mag":"3003938095"},"language":"pt","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5753/sbbd.2019.8827","pdf_url":"https://sol.sbc.org.br/index.php/sbbd/article/download/8827/8728","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://sol.sbc.org.br/index.php/sbbd/article/download/8827/8728","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5014906834","display_name":"D\u00e9bora Pina","orcid":"https://orcid.org/0000-0001-6616-0291"},"institutions":[{"id":"https://openalex.org/I122140584","display_name":"Universidade Federal do Rio de Janeiro","ror":"https://ror.org/03490as77","country_code":"BR","type":"education","lineage":["https://openalex.org/I122140584"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"D\u00e9bora B. Pina","raw_affiliation_strings":["COPPE -Universidade Federal do Rio de Janeiro (UFRJ)"],"affiliations":[{"raw_affiliation_string":"COPPE -Universidade Federal do Rio de Janeiro (UFRJ)","institution_ids":["https://openalex.org/I122140584"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087915351","display_name":"Liliane Neves","orcid":null},"institutions":[{"id":"https://openalex.org/I122140584","display_name":"Universidade Federal do Rio de Janeiro","ror":"https://ror.org/03490as77","country_code":"BR","type":"education","lineage":["https://openalex.org/I122140584"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Liliane Neves","raw_affiliation_strings":["COPPE -Universidade Federal do Rio de Janeiro (UFRJ)"],"affiliations":[{"raw_affiliation_string":"COPPE -Universidade Federal do Rio de Janeiro (UFRJ)","institution_ids":["https://openalex.org/I122140584"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045549996","display_name":"Aline Paes","orcid":"https://orcid.org/0000-0002-9089-7303"},"institutions":[{"id":"https://openalex.org/I161127581","display_name":"Universidade Federal Fluminense","ror":"https://ror.org/02rjhbb08","country_code":"BR","type":"education","lineage":["https://openalex.org/I161127581"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Aline Paes","raw_affiliation_strings":["Instituto de Computac \u00b8\u00e3o -Universidade Federal Fluminense (IC/UFF)"],"affiliations":[{"raw_affiliation_string":"Instituto de Computac \u00b8\u00e3o -Universidade Federal Fluminense (IC/UFF)","institution_ids":["https://openalex.org/I161127581"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050455034","display_name":"Daniel de Oliveira","orcid":"https://orcid.org/0000-0001-9346-7651"},"institutions":[{"id":"https://openalex.org/I161127581","display_name":"Universidade Federal Fluminense","ror":"https://ror.org/02rjhbb08","country_code":"BR","type":"education","lineage":["https://openalex.org/I161127581"]}],"countries":["BR"],"is_corresponding":true,"raw_author_name":"Daniel de Oliveira","raw_affiliation_strings":["Instituto de Computac \u00b8\u00e3o -Universidade Federal Fluminense (IC/UFF)"],"affiliations":[{"raw_affiliation_string":"Instituto de Computac \u00b8\u00e3o -Universidade Federal Fluminense (IC/UFF)","institution_ids":["https://openalex.org/I161127581"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5039896734","display_name":"Marta Mattoso","orcid":"https://orcid.org/0000-0002-0870-3371"},"institutions":[{"id":"https://openalex.org/I122140584","display_name":"Universidade Federal do Rio de Janeiro","ror":"https://ror.org/03490as77","country_code":"BR","type":"education","lineage":["https://openalex.org/I122140584"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Marta Mattoso","raw_affiliation_strings":["COPPE -Universidade Federal do Rio de Janeiro (UFRJ)"],"affiliations":[{"raw_affiliation_string":"COPPE -Universidade Federal do Rio de Janeiro (UFRJ)","institution_ids":["https://openalex.org/I122140584"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5050455034"],"corresponding_institution_ids":["https://openalex.org/I161127581"],"apc_list":null,"apc_paid":null,"fwci":0.206,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.550522,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"223","last_page":"228"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13650","display_name":"Computational Physics and Python Applications","score":0.9827,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13650","display_name":"Computational Physics and Python Applications","score":0.9827,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11986","display_name":"Scientific Computing and Data Management","score":0.9818,"subfield":{"id":"https://openalex.org/subfields/1802","display_name":"Information Systems and Management"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9765,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C15708023","wikidata":"https://www.wikidata.org/wiki/Q80083","display_name":"Humanities","level":1,"score":0.47908336},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.47388428},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.42835483},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.15595567}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.5753/sbbd.2019.8827","pdf_url":"https://sol.sbc.org.br/index.php/sbbd/article/download/8827/8728","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5753/sbbd.2019.8827","pdf_url":"https://sol.sbc.org.br/index.php/sbbd/article/download/8827/8728","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1983704199","https://openalex.org/W2097998348","https://openalex.org/W2112796928","https://openalex.org/W2163605009","https://openalex.org/W2271840356","https://openalex.org/W2343262332","https://openalex.org/W2889494745","https://openalex.org/W2949941638","https://openalex.org/W3100055683","https://openalex.org/W3110197861","https://openalex.org/W4301409228"],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W3002753104","https://openalex.org/W2748952813","https://openalex.org/W2600246793","https://openalex.org/W2142036596","https://openalex.org/W2077600819","https://openalex.org/W2072657027","https://openalex.org/W2061531152","https://openalex.org/W2007980826","https://openalex.org/W1979597421"],"abstract_inverted_index":{"O":[0],"treinamento":[1,79],"das":[2,19,69,80],"Redes":[3],"Neurais":[4],"Convolucionais":[5],"(CNN)":[6],"requer":[7],"o":[8,54],"ajuste":[9],"de":[10,22,32,42,61,63,71,78,86,92,94,110,121,126],"hiperpar\u00e2metros.":[11],"As":[12],"solu\u00e7\u00f5es":[13],"existentes":[14],"para":[15,28,58,65,75,107,114],"auxiliar":[16],"a":[17,40,45,50,67,76,90,97,102,108,115],"escolha":[18],"melhores":[20],"combina\u00e7\u00f5es":[21,70],"hiperpar\u00e2metros":[23,95,111],"definem":[24],"uma":[25],"representa\u00e7\u00e3o":[26,37],"pr\u00f3pria":[27],"modelar":[29],"os":[30],"relacionamentos":[31,60],"deriva\u00e7\u00e3o":[33,62],"dos":[34,119],"dados.":[35],"Essa":[36],"propriet\u00e1ria":[38],"dificulta":[39],"an\u00e1lise":[41,68,91,109],"dados":[43,64,85],"e":[44,88,112,117],"interoperabilidade.":[46],"Este":[47],"artigo":[48],"prop\u00f5e":[49],"CNNProv,":[51],"que":[52],"adota":[53],"padr\u00e3o":[55],"W3C":[56,105],"PROV":[57,106],"representar":[59],"facilitar":[66],"hiperpar\u00e2metros,":[72],"contribuindo":[73],"assim":[74],"fase":[77],"CNNs.":[81],"A":[82],"CNNProv":[83],"captura":[84],"proveni\u00eancia":[87],"permite":[89],"valores":[93],"durante":[96],"execu\u00e7\u00e3o.":[98],"Os":[99],"experimentos":[100],"mostram":[101],"adequa\u00e7\u00e3o":[103],"do":[104],"contribui":[113],"qualidade":[116],"confiabilidade":[118],"resultados":[120],"CNN,":[122],"com":[123],"overhead":[124],"desprez\u00edvel":[125],"at\u00e9,":[127],"no":[128],"m\u00e1ximo,":[129],"4%.":[130]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3003938095","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2024-12-08T11:44:47.250797","created_date":"2020-02-07"}