{"id":"https://openalex.org/W3172332075","doi":"https://doi.org/10.56553/popets-2022-0131","title":"Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation","display_name":"Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation","publication_year":2022,"publication_date":"2022-08-31","ids":{"openalex":"https://openalex.org/W3172332075","doi":"https://doi.org/10.56553/popets-2022-0131","mag":"3172332075"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.56553/popets-2022-0131","pdf_url":"https://petsymposium.org/popets/2022/popets-2022-0131.pdf","source":{"id":"https://openalex.org/S4210183172","display_name":"Proceedings on Privacy Enhancing Technologies","issn_l":"2299-0984","issn":["2299-0984"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320322","host_organization_name":"De Gruyter Open","host_organization_lineage":["https://openalex.org/P4310320322","https://openalex.org/P4310313990"],"host_organization_lineage_names":["De Gruyter Open","De Gruyter"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://petsymposium.org/popets/2022/popets-2022-0131.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062335887","display_name":"Nuttapong Attrapadung","orcid":"https://orcid.org/0000-0003-4116-1751"},"institutions":[{"id":"https://openalex.org/I202963720","display_name":"University of St. Gallen","ror":"https://ror.org/0561a3s31","country_code":"CH","type":"education","lineage":["https://openalex.org/I202963720"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Nuttapong Attrapadung","raw_affiliation_strings":["AIST, E-mail: {n.ttrapadung, t-matsuda","University of St. Gallen,"],"affiliations":[{"raw_affiliation_string":"University of St. Gallen,","institution_ids":["https://openalex.org/I202963720","https://openalex.org/I202963720"]},{"raw_affiliation_string":"AIST, E-mail: {n.ttrapadung, t-matsuda","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101905464","display_name":"Koki Hamada","orcid":"https://orcid.org/0000-0002-8863-6809"},"institutions":[{"id":"https://openalex.org/I202963720","display_name":"University of St. Gallen","ror":"https://ror.org/0561a3s31","country_code":"CH","type":"education","lineage":["https://openalex.org/I202963720"]},{"id":"https://openalex.org/I2251713219","display_name":"NTT (Japan)","ror":"https://ror.org/00berct97","country_code":"JP","type":"company","lineage":["https://openalex.org/I2251713219"]}],"countries":["CH","JP"],"is_corresponding":false,"raw_author_name":"Koki Hamada","raw_affiliation_strings":["NTT, E-mail: {koki.hamada.rb, dai.ikarashi.rd","University of St. Gallen,"],"affiliations":[{"raw_affiliation_string":"University of St. Gallen,","institution_ids":["https://openalex.org/I202963720","https://openalex.org/I202963720"]},{"raw_affiliation_string":"NTT, E-mail: {koki.hamada.rb, dai.ikarashi.rd","institution_ids":["https://openalex.org/I2251713219"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048150123","display_name":"Dai Ikarashi","orcid":null},"institutions":[{"id":"https://openalex.org/I202963720","display_name":"University of St. Gallen","ror":"https://ror.org/0561a3s31","country_code":"CH","type":"education","lineage":["https://openalex.org/I202963720"]},{"id":"https://openalex.org/I2251713219","display_name":"NTT (Japan)","ror":"https://ror.org/00berct97","country_code":"JP","type":"company","lineage":["https://openalex.org/I2251713219"]}],"countries":["CH","JP"],"is_corresponding":false,"raw_author_name":"Dai Ikarashi","raw_affiliation_strings":["NTT, E-mail: {koki.hamada.rb, dai.ikarashi.rd","University of St. Gallen,"],"affiliations":[{"raw_affiliation_string":"University of St. Gallen,","institution_ids":["https://openalex.org/I202963720","https://openalex.org/I202963720"]},{"raw_affiliation_string":"NTT, E-mail: {koki.hamada.rb, dai.ikarashi.rd","institution_ids":["https://openalex.org/I2251713219"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090126063","display_name":"Ryo Kikuchi","orcid":null},"institutions":[{"id":"https://openalex.org/I202963720","display_name":"University of St. Gallen","ror":"https://ror.org/0561a3s31","country_code":"CH","type":"education","lineage":["https://openalex.org/I202963720"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Ryo Kikuchi","raw_affiliation_strings":["University of St. Gallen,"],"affiliations":[{"raw_affiliation_string":"University of St. Gallen,","institution_ids":["https://openalex.org/I202963720"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009841755","display_name":"Takahiro Matsuda","orcid":"https://orcid.org/0000-0002-2882-3901"},"institutions":[{"id":"https://openalex.org/I202963720","display_name":"University of St. Gallen","ror":"https://ror.org/0561a3s31","country_code":"CH","type":"education","lineage":["https://openalex.org/I202963720"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Takahiro Matsuda","raw_affiliation_strings":["AIST, E-mail: {n.ttrapadung, t-matsuda","University of St. Gallen,"],"affiliations":[{"raw_affiliation_string":"AIST, E-mail: {n.ttrapadung, t-matsuda","institution_ids":[]},{"raw_affiliation_string":"University of St. Gallen,","institution_ids":["https://openalex.org/I202963720","https://openalex.org/I202963720"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025530415","display_name":"Ibuki Mishina","orcid":null},"institutions":[{"id":"https://openalex.org/I202963720","display_name":"University of St. Gallen","ror":"https://ror.org/0561a3s31","country_code":"CH","type":"education","lineage":["https://openalex.org/I202963720"]},{"id":"https://openalex.org/I2251713219","display_name":"NTT (Japan)","ror":"https://ror.org/00berct97","country_code":"JP","type":"company","lineage":["https://openalex.org/I2251713219"]}],"countries":["CH","JP"],"is_corresponding":false,"raw_author_name":"Ibuki Mishina","raw_affiliation_strings":["NTT, E-mail: {koki.hamada.rb, dai.ikarashi.rd","University of St. Gallen,"],"affiliations":[{"raw_affiliation_string":"University of St. Gallen,","institution_ids":["https://openalex.org/I202963720","https://openalex.org/I202963720"]},{"raw_affiliation_string":"NTT, E-mail: {koki.hamada.rb, dai.ikarashi.rd","institution_ids":["https://openalex.org/I2251713219"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028908883","display_name":"Hiraku Morita","orcid":"https://orcid.org/0000-0003-3547-7725"},"institutions":[{"id":"https://openalex.org/I202963720","display_name":"University of St. Gallen","ror":"https://ror.org/0561a3s31","country_code":"CH","type":"education","lineage":["https://openalex.org/I202963720"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Hiraku Morita","raw_affiliation_strings":["University of St. Gallen,"],"affiliations":[{"raw_affiliation_string":"University of St. Gallen,","institution_ids":["https://openalex.org/I202963720"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5054503997","display_name":"Jacob C. N. Schuldt","orcid":null},"institutions":[{"id":"https://openalex.org/I202963720","display_name":"University of St. Gallen","ror":"https://ror.org/0561a3s31","country_code":"CH","type":"education","lineage":["https://openalex.org/I202963720"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Jacob C. N. Schuldt","raw_affiliation_strings":["AIST, E-mail: {n.ttrapadung, t-matsuda","University of St. Gallen,"],"affiliations":[{"raw_affiliation_string":"University of St. Gallen,","institution_ids":["https://openalex.org/I202963720","https://openalex.org/I202963720"]},{"raw_affiliation_string":"AIST, E-mail: {n.ttrapadung, t-matsuda","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.27,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":15,"citation_normalized_percentile":{"value":0.99997,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":"2022","issue":"4","first_page":"746","last_page":"767"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10237","display_name":"Cryptography and Data Security","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11612","display_name":"Stochastic Gradient Optimization Techniques","score":0.9957,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/exponentiation","display_name":"Exponentiation","score":0.6149201},{"id":"https://openalex.org/keywords/secure-two-party-computation","display_name":"Secure two-party computation","score":0.43688974}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80650014},{"id":"https://openalex.org/C81539297","wikidata":"https://www.wikidata.org/wiki/Q33456","display_name":"Exponentiation","level":2,"score":0.6149201},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.5687976},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5455607},{"id":"https://openalex.org/C18396474","wikidata":"https://www.wikidata.org/wiki/Q2465888","display_name":"Secure multi-party computation","level":3,"score":0.5054269},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46174768},{"id":"https://openalex.org/C13652956","wikidata":"https://www.wikidata.org/wiki/Q7444883","display_name":"Secure two-party computation","level":4,"score":0.43688974},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4148433},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.34438273},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33173913},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.093976945},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.56553/popets-2022-0131","pdf_url":"https://petsymposium.org/popets/2022/popets-2022-0131.pdf","source":{"id":"https://openalex.org/S4210183172","display_name":"Proceedings on Privacy Enhancing Technologies","issn_l":"2299-0984","issn":["2299-0984"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320322","host_organization_name":"De Gruyter Open","host_organization_lineage":["https://openalex.org/P4310320322","https://openalex.org/P4310313990"],"host_organization_lineage_names":["De Gruyter Open","De Gruyter"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2106.02203","pdf_url":"https://arxiv.org/pdf/2106.02203","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.56553/popets-2022-0131","pdf_url":"https://petsymposium.org/popets/2022/popets-2022-0131.pdf","source":{"id":"https://openalex.org/S4210183172","display_name":"Proceedings on Privacy Enhancing Technologies","issn_l":"2299-0984","issn":["2299-0984"],"is_oa":true,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320322","host_organization_name":"De Gruyter Open","host_organization_lineage":["https://openalex.org/P4310320322","https://openalex.org/P4310313990"],"host_organization_lineage_names":["De Gruyter Open","De Gruyter"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.63,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":78,"referenced_works":["https://openalex.org/W147290027","https://openalex.org/W150396298","https://openalex.org/W1508764330","https://openalex.org/W1528693676","https://openalex.org/W1579771234","https://openalex.org/W1686810756","https://openalex.org/W2036133214","https://openalex.org/W2095705004","https://openalex.org/W2097407854","https://openalex.org/W2101234009","https://openalex.org/W2121640981","https://openalex.org/W2169716076","https://openalex.org/W2194775991","https://openalex.org/W2399200320","https://openalex.org/W2435473771","https://openalex.org/W2523246573","https://openalex.org/W2536058570","https://openalex.org/W2611357868","https://openalex.org/W2618530766","https://openalex.org/W2620512600","https://openalex.org/W2701059868","https://openalex.org/W2704367133","https://openalex.org/W2765200655","https://openalex.org/W2794888826","https://openalex.org/W2807792232","https://openalex.org/W2884909828","https://openalex.org/W2892164098","https://openalex.org/W2895865029","https://openalex.org/W2896768160","https://openalex.org/W2902497741","https://openalex.org/W2907225497","https://openalex.org/W2917560727","https://openalex.org/W2940604890","https://openalex.org/W2947809169","https://openalex.org/W2949140995","https://openalex.org/W2949716231","https://openalex.org/W2950460048","https://openalex.org/W2954221310","https://openalex.org/W2955533417","https://openalex.org/W2955751151","https://openalex.org/W2962835968","https://openalex.org/W2962867198","https://openalex.org/W2963106566","https://openalex.org/W2963733194","https://openalex.org/W2963752132","https://openalex.org/W2964121744","https://openalex.org/W2965929808","https://openalex.org/W2967497108","https://openalex.org/W2974824775","https://openalex.org/W2981672041","https://openalex.org/W2990399857","https://openalex.org/W2990885002","https://openalex.org/W2994689640","https://openalex.org/W3008493372","https://openalex.org/W3016063723","https://openalex.org/W3016648217","https://openalex.org/W3021878953","https://openalex.org/W3028290818","https://openalex.org/W3030382486","https://openalex.org/W3034821544","https://openalex.org/W3095777018","https://openalex.org/W3095979399","https://openalex.org/W3105274027","https://openalex.org/W3106501308","https://openalex.org/W3106542468","https://openalex.org/W3108146280","https://openalex.org/W3108503355","https://openalex.org/W3130108574","https://openalex.org/W3141585064","https://openalex.org/W3155184874","https://openalex.org/W3160700308","https://openalex.org/W3186649517","https://openalex.org/W3203738840","https://openalex.org/W3203851772","https://openalex.org/W3217809002","https://openalex.org/W4288560577","https://openalex.org/W4297952240","https://openalex.org/W4298110978"],"related_works":["https://openalex.org/W87038205","https://openalex.org/W2607129240","https://openalex.org/W2550686250","https://openalex.org/W2539281752","https://openalex.org/W2382527959","https://openalex.org/W2169765152","https://openalex.org/W2083701517","https://openalex.org/W2083288298","https://openalex.org/W2082804893","https://openalex.org/W2069340834"],"abstract_inverted_index":{"Machine":[0],"Learning":[1],"(ML)":[2],"algorithms,":[3,118],"especially":[4],"deep":[5],"neural":[6],"networks":[7,363,375],"(DNN),":[8],"have":[9],"proven":[10],"themselves":[11],"to":[12,78,96,122,155,212,254,276,296,314,378,395,406,410],"be":[13,62,79,156],"extremely":[14],"useful":[15],"tools":[16],"for":[17,45,139,202,328,373,386,393,420],"data":[18],"analysis,":[19],"and":[20,38,50,116,119,163,176,183,199,223,229,248,256,268,312,358,388,401,421,433],"are":[21,87,94,153,210,216,361],"increasingly":[22],"being":[23],"deployed":[24],"in":[25,144,219],"systems":[26,60],"operating":[27],"on":[28,69,323,354,423,438],"sensitive":[29],"data,":[30],"such":[31,59,262],"as":[32,131,146,263],"recommendation":[33],"systems,":[34,49],"banking":[35],"fraud":[36],"detection,":[37],"healthcare":[39],"systems.":[40,100],"This":[41,135,250],"underscores":[42],"the":[43,113,203,220,269,302,324],"need":[44],"privacy-preserving":[46],"ML":[47,76,115,129,189,260],"(PPML)":[48],"has":[51],"inspired":[52],"a":[53,98,172,178,279,379,429],"line":[54],"of":[55,103,112,142,186,238,305,331,336,366,370,381,399,431],"research":[56],"into":[57],"how":[58],"can":[61],"constructed":[63],"efficiently.":[64],"However,":[65],"most":[66],"prior":[67],"works":[68],"PPML":[70,99],"achieve":[71,396],"efficiency":[72],"by":[73],"requiring":[74],"advanced":[75],"algorithms":[77,125,151,190,261],"simplified":[80],"or":[81,126],"substituted":[82],"with":[83,232],"approximated":[84],"variants":[85],"that":[86,107,152,180,242,286],"\u201cMPC-friendly\u201d":[88],"before":[89],"multi-party":[90,193],"computation":[91],"(MPC)":[92],"techniques":[93],"applied":[95],"obtain":[97,282],"A":[101,235],"drawback":[102],"this":[104,147,168],"approach":[105,175,338],"is":[106,136,241,294,339,376,418],"it":[108],"requires":[109],"careful":[110],"fine-tuning":[111],"combined":[114],"MPC":[117],"might":[120],"lead":[121],"less":[123],"efficient":[124,182,200],"inferior":[127],"quality":[128],"(such":[130],"lower":[132],"prediction":[133],"accuracy).":[134],"an":[137,397],"issue":[138],"secure":[140,184,192,198,228,231,283,329],"training":[141,285,293,330],"DNNs":[143],"particular,":[145],"involves":[148],"several":[149],"arithmetic":[150],"thought":[154],"\u201cMPCunfriendly\u201d,":[157],"namely,":[158],"integer":[159],"division,":[160],"exponentiation,":[161],"inversion,":[162],"square":[164],"root":[165],"extraction.":[166],"In":[167],"work,":[169],"we":[170,196,224,281,351],"take":[171],"structurally":[173],"different":[174],"propose":[177,197,225],"framework":[179,251,372,427],"allows":[181],"evaluation":[185],"full-fledged":[187],"state-of-the-art":[188,288],"via":[191],"computation.":[194],"Specifically,":[195],"protocols":[201,215,218,240],"above":[204],"seemingly":[205],"MPC-unfriendly":[206],"computations":[207],"(but":[208],"which":[209,360,417],"essential":[211],"DNN).":[213],"Our":[214],"three-party":[217],"honest-majority":[221],"setting,":[222],"both":[226],"passively":[227],"actively":[230],"abort":[233],"variants.":[234],"notable":[236],"feature":[237],"our":[239,291,337,371,426],"they":[243],"simultaneously":[244],"provide":[245],"high":[246],"accuracy":[247,398],"efficiency.":[249],"enables":[252],"us":[253],"efficiently":[255],"securely":[257],"compute":[258],"modern":[259],"Adam":[264],"(Adaptive":[265],"moment":[266],"estimation)":[267],"softmax":[270],"function":[271],"\u201cas":[272],"is\u201d,":[273],"without":[274],"resorting":[275],"approximations.":[277],"As":[278],"result,":[280],"DNN":[284],"outperforms":[287],"threeparty":[289],"systems;":[290],"full":[292],"up":[295,313,377],"6.7":[297],"times":[298,316],"faster":[299,317,385,392,435],"than":[300,318],"just":[301],"online":[303],"phase":[304],"FALCON":[306],"(Wagh":[307],"et":[308,320,413],"al.":[309,321,414],"at":[310],"PETS\u201921)":[311],"4.2":[315],"Dalskov":[319],"(USENIX\u201921)":[322],"standard":[325],"benchmark":[326],"network":[327],"DNNs.":[332],"The":[333,368],"potential":[334],"advantage":[335],"even":[340],"greater":[341],"when":[342,404],"considering":[343],"more":[344],"complex":[345],"realistic":[346],"networks.":[347,440],"To":[348],"demonstrate":[349],"this,":[350],"perform":[352],"measurements":[353],"real-world":[355],"DNNs,":[356],"AlexNet":[357,387],"VGG16,":[359],"large":[362],"containing":[364],"millions":[365],"parameters.":[367],"performance":[369],"these":[374,439],"factor":[380,430],"26":[382],"\u223c":[383,390],"33":[384],"48":[389],"51":[391],"VGG16":[394],"60%":[400],"70%,":[402],"respectively,":[403,437],"compared":[405,409],"FALCON.":[407],"Even":[408],"CRYPTGPU":[411],"(Tan":[412],"IEEE":[415],"S&P\u201921),":[416],"optimized":[419],"runs":[422],"powerful":[424],"GPUs,":[425],"achieves":[428],"2.1":[432],"4.1":[434],"performance,":[436]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3172332075","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":3}],"updated_date":"2025-01-08T13:53:02.580211","created_date":"2021-06-22"}