{"id":"https://openalex.org/W4286256876","doi":"https://doi.org/10.56553/popets-2022-0072","title":"Athena: Probabilistic Verification of Machine Unlearning","display_name":"Athena: Probabilistic Verification of Machine Unlearning","publication_year":2022,"publication_date":"2022-07-01","ids":{"openalex":"https://openalex.org/W4286256876","doi":"https://doi.org/10.56553/popets-2022-0072"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.56553/popets-2022-0072","pdf_url":"https://petsymposium.org/popets/2022/popets-2022-0072.pdf","source":{"id":"https://openalex.org/S4210183172","display_name":"Proceedings on Privacy Enhancing Technologies","issn_l":"2299-0984","issn":["2299-0984"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320322","host_organization_name":"De Gruyter Open","host_organization_lineage":["https://openalex.org/P4310320322","https://openalex.org/P4310313990"],"host_organization_lineage_names":["De Gruyter Open","De Gruyter"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://petsymposium.org/popets/2022/popets-2022-0072.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5009936032","display_name":"David Sommer","orcid":"https://orcid.org/0000-0002-3435-8727"},"institutions":[{"id":"https://openalex.org/I20089843","display_name":"Princeton University","ror":"https://ror.org/00hx57361","country_code":"US","type":"funder","lineage":["https://openalex.org/I20089843"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"David M. Sommer","raw_affiliation_strings":["Princeton University,","Z\u00fchlke"],"affiliations":[{"raw_affiliation_string":"Princeton University,","institution_ids":["https://openalex.org/I20089843","https://openalex.org/I20089843","https://openalex.org/I20089843"]},{"raw_affiliation_string":"Z\u00fchlke","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101908173","display_name":"Liwei Song","orcid":"https://orcid.org/0000-0003-4176-590X"},"institutions":[{"id":"https://openalex.org/I20089843","display_name":"Princeton University","ror":"https://ror.org/00hx57361","country_code":"US","type":"funder","lineage":["https://openalex.org/I20089843"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Liwei Song","raw_affiliation_strings":["Princeton University,"],"affiliations":[{"raw_affiliation_string":"Princeton University,","institution_ids":["https://openalex.org/I20089843","https://openalex.org/I20089843","https://openalex.org/I20089843"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047021537","display_name":"Sameer Wagh","orcid":null},"institutions":[{"id":"https://openalex.org/I20089843","display_name":"Princeton University","ror":"https://ror.org/00hx57361","country_code":"US","type":"funder","lineage":["https://openalex.org/I20089843"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sameer Wagh","raw_affiliation_strings":["Princeton University,"],"affiliations":[{"raw_affiliation_string":"Princeton University,","institution_ids":["https://openalex.org/I20089843","https://openalex.org/I20089843","https://openalex.org/I20089843"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5103814915","display_name":"Prateek Mittal","orcid":null},"institutions":[{"id":"https://openalex.org/I20089843","display_name":"Princeton University","ror":"https://ror.org/00hx57361","country_code":"US","type":"funder","lineage":["https://openalex.org/I20089843"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Prateek Mittal","raw_affiliation_strings":["Princeton University,"],"affiliations":[{"raw_affiliation_string":"Princeton University,","institution_ids":["https://openalex.org/I20089843","https://openalex.org/I20089843","https://openalex.org/I20089843"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.811,"has_fulltext":false,"cited_by_count":21,"citation_normalized_percentile":{"value":0.999972,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"2022","issue":"3","first_page":"268","last_page":"290"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11614","display_name":"Cloud Data Security Solutions","score":0.9708,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9592,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8525509},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5517188},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.5408303},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.53715235},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.5323501},{"id":"https://openalex.org/C2780378061","wikidata":"https://www.wikidata.org/wiki/Q25351891","display_name":"Service (business)","level":2,"score":0.47174606},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.41936067},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C136264566","wikidata":"https://www.wikidata.org/wiki/Q159810","display_name":"Economy","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.56553/popets-2022-0072","pdf_url":"https://petsymposium.org/popets/2022/popets-2022-0072.pdf","source":{"id":"https://openalex.org/S4210183172","display_name":"Proceedings on Privacy Enhancing Technologies","issn_l":"2299-0984","issn":["2299-0984"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320322","host_organization_name":"De Gruyter Open","host_organization_lineage":["https://openalex.org/P4310320322","https://openalex.org/P4310313990"],"host_organization_lineage_names":["De Gruyter Open","De Gruyter"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.56553/popets-2022-0072","pdf_url":"https://petsymposium.org/popets/2022/popets-2022-0072.pdf","source":{"id":"https://openalex.org/S4210183172","display_name":"Proceedings on Privacy Enhancing Technologies","issn_l":"2299-0984","issn":["2299-0984"],"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310320322","host_organization_name":"De Gruyter Open","host_organization_lineage":["https://openalex.org/P4310320322","https://openalex.org/P4310313990"],"host_organization_lineage_names":["De Gruyter Open","De Gruyter"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/8","score":0.44,"display_name":"Decent work and economic growth"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":64,"referenced_works":["https://openalex.org/W1488996941","https://openalex.org/W1522301498","https://openalex.org/W1995897489","https://openalex.org/W2051267297","https://openalex.org/W2108598243","https://openalex.org/W2170240176","https://openalex.org/W2194775991","https://openalex.org/W2250539671","https://openalex.org/W2399275698","https://openalex.org/W2460441129","https://openalex.org/W2473418344","https://openalex.org/W2535690855","https://openalex.org/W2587019100","https://openalex.org/W2734358244","https://openalex.org/W2744175342","https://openalex.org/W2753783305","https://openalex.org/W2774423163","https://openalex.org/W2785729136","https://openalex.org/W2795435272","https://openalex.org/W2807363941","https://openalex.org/W2883613460","https://openalex.org/W2897830718","https://openalex.org/W2898759955","https://openalex.org/W2900249654","https://openalex.org/W2914712270","https://openalex.org/W2934843808","https://openalex.org/W2942091739","https://openalex.org/W2946930197","https://openalex.org/W2952604841","https://openalex.org/W2955356027","https://openalex.org/W2963311060","https://openalex.org/W2965721472","https://openalex.org/W2966689772","https://openalex.org/W2971661634","https://openalex.org/W2985913519","https://openalex.org/W2986013765","https://openalex.org/W2996800219","https://openalex.org/W3003926725","https://openalex.org/W3013068160","https://openalex.org/W3029511006","https://openalex.org/W3035261884","https://openalex.org/W3035556513","https://openalex.org/W3040639636","https://openalex.org/W3104224589","https://openalex.org/W3110164654","https://openalex.org/W3114686421","https://openalex.org/W3121478722","https://openalex.org/W3152758407","https://openalex.org/W3156423484","https://openalex.org/W3157597523","https://openalex.org/W3193736348","https://openalex.org/W3195462295","https://openalex.org/W3206057312","https://openalex.org/W3214586949","https://openalex.org/W4287869905","https://openalex.org/W4287998266","https://openalex.org/W4288283361","https://openalex.org/W4289147229","https://openalex.org/W4289300166","https://openalex.org/W4289766020","https://openalex.org/W4292923129","https://openalex.org/W4294122399","https://openalex.org/W4294506858","https://openalex.org/W753012316"],"related_works":["https://openalex.org/W4306674287","https://openalex.org/W4290792893","https://openalex.org/W4287776258","https://openalex.org/W4283379348","https://openalex.org/W4224009465","https://openalex.org/W3181746755","https://openalex.org/W3027997911","https://openalex.org/W3021430260","https://openalex.org/W3016958897","https://openalex.org/W2961085424"],"abstract_inverted_index":{"The":[0,27],"right":[1,9,14],"to":[2,10,17,85,222,266],"be":[3],"forgotten,":[4],"also":[5,98],"known":[6,99],"as":[7,100,113,171],"the":[8,13,39,46,75,87,105,119,202,205],"erasure,":[11],"is":[12,53,233],"of":[15,29,89,107,122,167,204,213,252],"individuals":[16],"have":[18],"their":[19,67],"data":[20,94,146,226,268],"erased":[21],"from":[22],"an":[23],"entity":[24],"storing":[25],"it.":[26],"status":[28],"this":[30,71],"long":[31,183],"held":[32],"notion":[33],"was":[34],"legally":[35],"solidified":[36],"recently":[37],"by":[38],"General":[40],"Data":[41],"Protection":[42],"Regulation":[43],"(GDPR)":[44],"in":[45,78,104,144],"European":[47],"Union.":[48],"As":[49],"a":[50,54,80,114,133,153,165,246,249],"consequence,":[51],"there":[52],"need":[55],"for":[56,93,155,248,260],"mechanisms":[57,92],"whereby":[58],"users":[59,218],"can":[60,257],"verify":[61],"if":[62,216],"service":[63,115,207],"providers":[64],"comply":[65],"with":[66,148,225],"deletion":[68,95,147,227,269],"requests.":[69,270],"In":[70],"work,":[72],"we":[73,131],"take":[74],"first":[76],"step":[77],"proposing":[79],"formal":[81],"framework,":[82],"called":[83],"Athena,":[84],"study":[86],"design":[88],"such":[90,170],"verification":[91,124,135,212],"requests":[96],"\u2013":[97,103],"machine":[101,111,158,254],"unlearning":[102],"context":[106],"systems":[108],"that":[109,137],"provide":[110,258],"learning":[112],"(MLaaS).":[116],"Athena":[117],"allows":[118],"rigorous":[120],"quantification":[121],"any":[123],"mechanism":[125,136,232],"based":[126],"on":[127,201],"hypothesis":[128],"testing.":[129],"Furthermore,":[130],"propose":[132],"novel":[134],"leverages":[138],"backdoors":[139],"and":[140,182,187,229,262],"demonstrate":[141,193],"its":[142],"effectiveness":[143],"certifying":[145],"high":[149,210],"confidence,":[150],"thus":[151],"providing":[152],"basis":[154],"quantitatively":[156],"inferring":[157],"unlearning.":[159],"We":[160,192],"evaluate":[161],"our":[162,196,220,231,243],"approach":[163,197,244],"over":[164,188],"range":[166],"network":[168],"architectures":[169],"multi-layer":[172],"perceptrons":[173],"(MLP),":[174],"convolutional":[175],"neural":[176],"networks":[177,180],"(CNN),":[178],"residual":[179],"(ResNet),":[181],"short-term":[184],"memory":[185],"(LSTM)":[186],"6":[189],"different":[190],"datasets.":[191],"that:":[194],"(1)":[195],"has":[198],"minimal":[199],"effect":[200],"accuracy":[203],"ML":[206],"but":[208],"provides":[209,245],"confidence":[211],"unlearning,":[214,255],"even":[215],"multiple":[217],"employ":[219],"system":[221],"ascertain":[223],"compliance":[224],"requests,":[228],"(2)":[230],"robust":[234],"against":[235],"servers":[236],"deploying":[237],"state-of-the-art":[238],"backdoor":[239],"defense":[240],"methods.":[241],"Overall,":[242],"foundation":[247],"quantitative":[250],"analysis":[251],"verifying":[253],"which":[256],"support":[259],"legal":[261],"regulatory":[263],"frameworks":[264],"pertaining":[265],"users\u2019":[267]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4286256876","counts_by_year":[{"year":2025,"cited_by_count":3},{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":4}],"updated_date":"2025-05-06T08:49:48.648700","created_date":"2022-07-21"}