{"id":"https://openalex.org/W2126061911","doi":"https://doi.org/10.5555/1953048.2021070","title":"Discriminative Learning of Bayesian Networks via Factorized Conditional Log-Likelihood","display_name":"Discriminative Learning of Bayesian Networks via Factorized Conditional Log-Likelihood","publication_year":2011,"publication_date":"2011-02-01","ids":{"openalex":"https://openalex.org/W2126061911","doi":"https://doi.org/10.5555/1953048.2021070","mag":"2126061911"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"http://jmlr.csail.mit.edu/papers/volume12/carvalho11a/carvalho11a.pdf","pdf_url":null,"source":{"id":"https://openalex.org/S118988714","display_name":"Journal of Machine Learning Research","issn_l":"1532-4435","issn":["1532-4435","1533-7928"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310315718","host_organization_name":"The MIT Press","host_organization_lineage":["https://openalex.org/P4310315718"],"host_organization_lineage_names":["The MIT Press"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":[],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5010513234","display_name":"Alexandra M. Carvalho","orcid":"https://orcid.org/0000-0001-6607-7711"},"institutions":[{"id":"https://openalex.org/I141596103","display_name":"University of Lisbon","ror":"https://ror.org/01c27hj86","country_code":"PT","type":"funder","lineage":["https://openalex.org/I141596103"]}],"countries":["PT"],"is_corresponding":false,"raw_author_name":"Alexandra M. Carvalho","raw_affiliation_strings":["Technical University of Lisbon"],"affiliations":[{"raw_affiliation_string":"Technical University of Lisbon","institution_ids":["https://openalex.org/I141596103"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066842476","display_name":"Teemu Roos","orcid":"https://orcid.org/0000-0001-9470-3759"},"institutions":[{"id":"https://openalex.org/I4210102852","display_name":"Helsinki Art Museum","ror":"https://ror.org/01bjs1d88","country_code":"FI","type":"archive","lineage":["https://openalex.org/I4210102852"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Teemu Roos","raw_affiliation_strings":["Helsingin tietotekniikan tutkimuslaitos"],"affiliations":[{"raw_affiliation_string":"Helsingin tietotekniikan tutkimuslaitos","institution_ids":["https://openalex.org/I4210102852"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001327675","display_name":"Arlindo L. Oliveira","orcid":"https://orcid.org/0000-0001-8638-5594"},"institutions":[{"id":"https://openalex.org/I141596103","display_name":"University of Lisbon","ror":"https://ror.org/01c27hj86","country_code":"PT","type":"funder","lineage":["https://openalex.org/I141596103"]}],"countries":["PT"],"is_corresponding":false,"raw_author_name":"Arlindo L. Oliveira","raw_affiliation_strings":["Technical University of Lisbon"],"affiliations":[{"raw_affiliation_string":"Technical University of Lisbon","institution_ids":["https://openalex.org/I141596103"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5069221880","display_name":"Petri Myllym\u00e4ki","orcid":"https://orcid.org/0000-0001-9095-282X"},"institutions":[{"id":"https://openalex.org/I4210102852","display_name":"Helsinki Art Museum","ror":"https://ror.org/01bjs1d88","country_code":"FI","type":"archive","lineage":["https://openalex.org/I4210102852"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Petri Myllym\u00e4ki","raw_affiliation_strings":["Helsingin tietotekniikan tutkimuslaitos"],"affiliations":[{"raw_affiliation_string":"Helsingin tietotekniikan tutkimuslaitos","institution_ids":["https://openalex.org/I4210102852"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":9.106,"has_fulltext":false,"cited_by_count":51,"citation_normalized_percentile":{"value":0.960955,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"12","issue":"63","first_page":"2181","last_page":"2210"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9761,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9218,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.8404776},{"id":"https://openalex.org/keywords/bayesian-information-criterion","display_name":"Bayesian information criterion","score":0.63739234},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.60765475},{"id":"https://openalex.org/keywords/conditional-probability","display_name":"Conditional probability","score":0.43954858}],"concepts":[{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.8404776},{"id":"https://openalex.org/C168136583","wikidata":"https://www.wikidata.org/wiki/Q1988242","display_name":"Bayesian information criterion","level":2,"score":0.63739234},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.60765475},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58525646},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5388199},{"id":"https://openalex.org/C33724603","wikidata":"https://www.wikidata.org/wiki/Q812540","display_name":"Bayesian network","level":2,"score":0.5106457},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4821717},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.44533095},{"id":"https://openalex.org/C44492722","wikidata":"https://www.wikidata.org/wiki/Q327069","display_name":"Conditional probability","level":2,"score":0.43954858},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40502053},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3233021},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.23458487},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"http://jmlr.csail.mit.edu/papers/volume12/carvalho11a/carvalho11a.pdf","pdf_url":null,"source":{"id":"https://openalex.org/S118988714","display_name":"Journal of Machine Learning Research","issn_l":"1532-4435","issn":["1532-4435","1533-7928"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310315718","host_organization_name":"The MIT Press","host_organization_lineage":["https://openalex.org/P4310315718"],"host_organization_lineage_names":["The MIT Press"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.76,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W110813552","https://openalex.org/W111281073","https://openalex.org/W1490787220","https://openalex.org/W1506481126","https://openalex.org/W1530964327","https://openalex.org/W1550913493","https://openalex.org/W1568555062","https://openalex.org/W1585743408","https://openalex.org/W1586003574","https://openalex.org/W1590398161","https://openalex.org/W1680392829","https://openalex.org/W1817561967","https://openalex.org/W1976019979","https://openalex.org/W1986750708","https://openalex.org/W2017337590","https://openalex.org/W2031357797","https://openalex.org/W2084812512","https://openalex.org/W2099111195","https://openalex.org/W2099900459","https://openalex.org/W2099992083","https://openalex.org/W2109943925","https://openalex.org/W2121360488","https://openalex.org/W2125690626","https://openalex.org/W2130416704","https://openalex.org/W2133990480","https://openalex.org/W2137587467","https://openalex.org/W2140785063","https://openalex.org/W2142390772","https://openalex.org/W2155593578","https://openalex.org/W2159080219","https://openalex.org/W2163166770","https://openalex.org/W2170112109","https://openalex.org/W2171296290","https://openalex.org/W2211621381","https://openalex.org/W2552577366","https://openalex.org/W2887002214","https://openalex.org/W2912780563","https://openalex.org/W3009784374","https://openalex.org/W3136726919"],"related_works":["https://openalex.org/W3120740533","https://openalex.org/W2211621381","https://openalex.org/W2170112109","https://openalex.org/W2163166770","https://openalex.org/W2159080219","https://openalex.org/W2142635246","https://openalex.org/W2142390772","https://openalex.org/W2140785063","https://openalex.org/W2137587467","https://openalex.org/W2133990480","https://openalex.org/W2121360488","https://openalex.org/W2109743529","https://openalex.org/W2099992083","https://openalex.org/W2031357797","https://openalex.org/W2008906462","https://openalex.org/W1989060120","https://openalex.org/W1817561967","https://openalex.org/W1585743408","https://openalex.org/W1565746575","https://openalex.org/W1511986666"],"abstract_inverted_index":{"We":[0],"propose":[1],"an":[2,22,68,90],"efficient":[3,45],"and":[4,55],"parameter-free":[5],"scoring":[6,62],"criterion,":[7,87],"the":[8,25,39,48,52,59,82,85,106,120],"factorized":[9],"conditional":[10,26],"log-likelihood":[11,27,61],"(fCLL),":[12],"for":[13],"learning":[14],"Bayesian":[15],"network":[16,40],"classifiers.":[17,95],"The":[18,29,64],"proposed":[19,86],"score":[20],"is":[21,31],"approximation":[23,30],"of":[24,47,84,101],"criterion.":[28,63],"devised":[32],"in":[33],"order":[34],"to":[35],"guarantee":[36],"decomposability":[37],"over":[38],"structure,":[41],"as":[42,44,58,116,119],"well":[43],"estimation":[46],"optimal":[49],"parameters,":[50],"achieving":[51],"same":[53],"time":[54],"space":[56],"complexity":[57],"traditional":[60],"resulting":[65],"criterion":[66],"has":[67],"information-theoretic":[69],"interpretation":[70],"based":[71],"on":[72,97],"interaction":[73],"information,":[74],"which":[75],"exhibits":[76],"its":[77],"discriminative":[78],"nature.":[79],"To":[80],"evaluate":[81],"performance":[83],"we":[88],"present":[89],"empirical":[91],"comparison":[92],"with":[93],"state-of-the-art":[94],"Results":[96],"a":[98],"large":[99],"suite":[100],"benchmark":[102],"data":[103],"sets":[104],"from":[105],"UCI":[107],"repository":[108],"show":[109],"that":[110],"fCLL-trained":[111],"classifiers":[112],"achieve":[113],"at":[114],"least":[115],"good":[117],"accuracy":[118],"best":[121],"compared":[122],"classifiers,":[123],"using":[124],"significantly":[125],"less":[126],"computational":[127],"resources.":[128]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2126061911","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":6},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":4},{"year":2016,"cited_by_count":3},{"year":2015,"cited_by_count":6},{"year":2014,"cited_by_count":10},{"year":2013,"cited_by_count":7},{"year":2012,"cited_by_count":6}],"updated_date":"2025-03-22T11:37:52.487806","created_date":"2016-06-24"}