{"id":"https://openalex.org/W4382993005","doi":"https://doi.org/10.54364/aaiml.2023.1166","title":"Linguistically-Inspired Neural Coreference Resolution","display_name":"Linguistically-Inspired Neural Coreference Resolution","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4382993005","doi":"https://doi.org/10.54364/aaiml.2023.1166"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.54364/aaiml.2023.1166","pdf_url":null,"source":{"id":"https://openalex.org/S4210238872","display_name":"Advances in Artificial Intelligence and Machine Learning","issn_l":"2582-9793","issn":["2582-9793"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://doi.org/10.54364/aaiml.2023.1166","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5104138592","display_name":"Xuanyue Yang","orcid":null},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xuanyue Yang","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, Pennsylvania United States"],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, Pennsylvania United States","institution_ids":["https://openalex.org/I74973139","https://openalex.org/I74973139","https://openalex.org/I74973139","https://openalex.org/I74973139","https://openalex.org/I74973139"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101873591","display_name":"Wenting Ye","orcid":"https://orcid.org/0000-0002-1330-6469"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wenting Ye","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, Pennsylvania United States"],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, Pennsylvania United States","institution_ids":["https://openalex.org/I74973139","https://openalex.org/I74973139","https://openalex.org/I74973139","https://openalex.org/I74973139","https://openalex.org/I74973139"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025361608","display_name":"Luke Breitfeller","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luke Breitfeller","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045003110","display_name":"Tianwei Yue","orcid":"https://orcid.org/0000-0003-1219-153X"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tianwei Yue","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, Pennsylvania United States"],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, Pennsylvania United States","institution_ids":["https://openalex.org/I74973139","https://openalex.org/I74973139","https://openalex.org/I74973139","https://openalex.org/I74973139","https://openalex.org/I74973139"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100668416","display_name":"Wenping Wang","orcid":"https://orcid.org/0000-0002-2284-3952"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wenping Wang","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, Pennsylvania United States"],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, Pennsylvania United States","institution_ids":["https://openalex.org/I74973139","https://openalex.org/I74973139","https://openalex.org/I74973139","https://openalex.org/I74973139","https://openalex.org/I74973139"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.409,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":4,"citation_normalized_percentile":{"value":0.606989,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":91},"biblio":{"volume":"03","issue":"02","first_page":"1122","last_page":"1134"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13629","display_name":"Text Readability and Simplification","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/coreference","display_name":"Coreference","score":0.96676373},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.73477626},{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.5608482}],"concepts":[{"id":"https://openalex.org/C28076734","wikidata":"https://www.wikidata.org/wiki/Q63087","display_name":"Coreference","level":3,"score":0.96676373},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83038414},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.73477626},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.67638385},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.6430325},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.5608482},{"id":"https://openalex.org/C138268822","wikidata":"https://www.wikidata.org/wiki/Q1051925","display_name":"Resolution (logic)","level":2,"score":0.5244622},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.4394983},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4251952},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39403313},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.54364/aaiml.2023.1166","pdf_url":null,"source":{"id":"https://openalex.org/S4210238872","display_name":"Advances in Artificial Intelligence and Machine Learning","issn_l":"2582-9793","issn":["2582-9793"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.54364/aaiml.2023.1166","pdf_url":null,"source":{"id":"https://openalex.org/S4210238872","display_name":"Advances in Artificial Intelligence and Machine Learning","issn_l":"2582-9793","issn":["2582-9793"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.83,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1965693266","https://openalex.org/W2155069789","https://openalex.org/W2252031764","https://openalex.org/W2493738899","https://openalex.org/W2604685013","https://openalex.org/W2894706950","https://openalex.org/W2894769705","https://openalex.org/W2962739339","https://openalex.org/W2962788148","https://openalex.org/W2963087868","https://openalex.org/W2963167649","https://openalex.org/W2963355447","https://openalex.org/W2963695529","https://openalex.org/W2964222246","https://openalex.org/W3117131443","https://openalex.org/W3167631113","https://openalex.org/W3173934024","https://openalex.org/W3213922774","https://openalex.org/W4206124171","https://openalex.org/W4384652082","https://openalex.org/W59585178"],"related_works":["https://openalex.org/W4385749782","https://openalex.org/W3215967424","https://openalex.org/W3167631113","https://openalex.org/W3120396479","https://openalex.org/W2765988220","https://openalex.org/W2396571892","https://openalex.org/W2251351510","https://openalex.org/W2227889443","https://openalex.org/W2139373276","https://openalex.org/W1509033667"],"abstract_inverted_index":{"The":[0],"field":[1],"of":[2,12,37,43,46,99,185],"coreference":[3,23,186],"resolution":[4,24],"has":[5],"witnessed":[6],"significant":[7],"advancements":[8],"since":[9],"the":[10,21,38,52,85,122,142,159],"introduction":[11],"deep":[13],"learning-based":[14],"models.":[15],"In":[16],"this":[17],"paper,":[18],"we":[19,76,114,130],"replicate":[20],"state-of-the-art":[22],"model":[25,53,139,150],"and":[26,102],"perform":[27,132],"a":[28,34,118,181],"thorough":[29],"error":[30],"analysis.":[31],"We":[32,162],"identify":[33],"potential":[35],"limitation":[36],"current":[39],"approach":[40,79],"in":[41,62,121,158],"terms":[42],"its":[44],"treatment":[45],"grammatical":[47],"constructions":[48],"within":[49],"sentences.":[50,71,108],"Furthermore,":[51],"struggles":[54],"to":[55,135,173,180],"leverage":[56],"contextual":[57],"information":[58,83],"across":[59,107],"sentences,":[60],"resulting":[61],"suboptimal":[63],"accuracy":[64],"when":[65],"resolving":[66],"mentions":[67],"that":[68,80,105,148,155,164],"span":[69],"multiple":[70],"Motivated":[72],"by":[73],"these":[74,111,165],"observations,":[75],"propose":[77],"an":[78],"integrates":[81],"linguistic":[82,153],"throughout":[84],"entire":[86],"architecture.":[87],"Our":[88,145],"innovative":[89],"contributions":[90],"include":[91],"multitask":[92],"learning":[93],"with":[94],"part-of-speech":[95],"(POS)":[96],"tagging,":[97],"supervision":[98],"intermediate":[100],"scores,":[101],"self-attention":[103],"mechanisms":[104],"operate":[106],"By":[109],"incorporating":[110],"linguisticinspired":[112],"modules,":[113],"not":[115],"only":[116],"achieve":[117],"modest":[119],"improvement":[120],"F1":[123],"score":[124],"on":[125],"CoNLL":[126],"2012":[127],"dataset,":[128],"but":[129,176],"also":[131],"qualitative":[133],"analysis":[134],"ascertain":[136],"whether":[137],"our":[138,149],"invisibly":[140],"surpasses":[141],"baseline":[143],"performance.":[144],"findings":[146],"demonstrate":[147],"successfully":[151],"learns":[152],"signals":[154],"are":[156],"absent":[157],"original":[160],"baseline.":[161],"posit":[163],"enhance":[166],"ments":[167],"may":[168],"have":[169],"gone":[170],"undetected":[171],"due":[172],"annotation":[174],"errors,":[175],"they":[177],"nonetheless":[178],"lead":[179],"more":[182],"accurate":[183],"understanding":[184],"resolution.":[187]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4382993005","counts_by_year":[{"year":2023,"cited_by_count":4}],"updated_date":"2024-12-13T22:15:12.925850","created_date":"2023-07-04"}