{"id":"https://openalex.org/W3109921555","doi":"https://doi.org/10.5220/0010181501500157","title":"Active Output Selection Strategies for Multiple Learning Regression Models","display_name":"Active Output Selection Strategies for Multiple Learning Regression Models","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3109921555","doi":"https://doi.org/10.5220/0010181501500157","mag":"3109921555"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5220/0010181501500157","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.5220/0010181501500157","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5045977850","display_name":"Adrian Prochaska","orcid":"https://orcid.org/0000-0003-2707-1266"},"institutions":[{"id":"https://openalex.org/I1332474105","display_name":"Mercedes-Benz (Germany)","ror":"https://ror.org/055rn2a38","country_code":"DE","type":"company","lineage":["https://openalex.org/I1332474105"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Adrian Prochaska","raw_affiliation_strings":["Mercedes-Benz AG, 71059 Sindelfingen, Germany, --- Select a Country ---"],"affiliations":[{"raw_affiliation_string":"Mercedes-Benz AG, 71059 Sindelfingen, Germany, --- Select a Country ---","institution_ids":["https://openalex.org/I1332474105"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003335150","display_name":"Julien Pillas","orcid":null},"institutions":[{"id":"https://openalex.org/I1332474105","display_name":"Mercedes-Benz (Germany)","ror":"https://ror.org/055rn2a38","country_code":"DE","type":"company","lineage":["https://openalex.org/I1332474105"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Julien Pillas","raw_affiliation_strings":["Mercedes-Benz AG, 71059 Sindelfingen, Germany, --- Select a Country ---"],"affiliations":[{"raw_affiliation_string":"Mercedes-Benz AG, 71059 Sindelfingen, Germany, --- Select a Country ---","institution_ids":["https://openalex.org/I1332474105"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5111908851","display_name":"Bernard B\u00e4ker","orcid":null},"institutions":[{"id":"https://openalex.org/I78650965","display_name":"TU Dresden","ror":"https://ror.org/042aqky30","country_code":"DE","type":"education","lineage":["https://openalex.org/I78650965"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Bernard B\u00e4ker","raw_affiliation_strings":["TU Dresden, Chair of Vehicle Mechatronics, 01062 Dresden, Germany, --- Select a Country ---"],"affiliations":[{"raw_affiliation_string":"TU Dresden, Chair of Vehicle Mechatronics, 01062 Dresden, Germany, --- Select a Country ---","institution_ids":["https://openalex.org/I78650965"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.763756,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":57,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"150","last_page":"157"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.982,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11236","display_name":"Control Systems and Identification","score":0.9803,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.80018824},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6856231}],"concepts":[{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.80018824},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72198254},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6856231},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5715744},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.51831305},{"id":"https://openalex.org/C165838908","wikidata":"https://www.wikidata.org/wiki/Q736777","display_name":"Calibration","level":2,"score":0.48519424},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.4700987},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.4572929},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.4421634},{"id":"https://openalex.org/C77967617","wikidata":"https://www.wikidata.org/wiki/Q4677561","display_name":"Active learning (machine learning)","level":2,"score":0.42881143},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.4199857},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.14186633},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13192281},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.073485136},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.5220/0010181501500157","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2011.14307","pdf_url":"https://arxiv.org/pdf/2011.14307","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2011.14307","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5220/0010181501500157","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W3109921555","https://openalex.org/W3128393593"],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1531909365","https://openalex.org/W1591699755","https://openalex.org/W1667100839","https://openalex.org/W1746819321","https://openalex.org/W1993615002","https://openalex.org/W2003381716","https://openalex.org/W2063686375","https://openalex.org/W2115305054","https://openalex.org/W2135393913","https://openalex.org/W2163047117","https://openalex.org/W2341531400","https://openalex.org/W2903158431","https://openalex.org/W2963474846","https://openalex.org/W2964129014","https://openalex.org/W3138949179","https://openalex.org/W4388284198"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4295332818","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2121910908","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"Active":[0],"learning":[1,32,112],"shows":[2],"promise":[3],"to":[4,55,68,77,90,98,102,124,127,143],"decrease":[5,91],"test":[6],"bench":[7],"time":[8],"for":[9,18,130],"model-based":[10],"drivability":[11],"calibration.This":[12],"paper":[13],"presents":[14],"a":[15,63,69,81,103,144],"new":[16],"strategy":[17,29,87],"active":[19,111],"output":[20,42],"selection,":[21],"which":[22],"suits":[23],"the":[24,36,41,45,85,92,121,138],"needs":[25],"of":[26,94],"calibration":[27],"tasks.The":[28],"is":[30,53,88],"actively":[31],"multiple":[33],"outputs":[34],"in":[35,62],"same":[37],"input":[38],"space.It":[39],"chooses":[40],"model":[43],"with":[44,60],"highest":[46],"cross-validation":[47],"error":[48],"as":[49],"leading.The":[50],"presented":[51,86],"method":[52],"applied":[54],"three":[56],"different":[57],"toy":[58],"examples":[59],"noise":[61],"real":[64],"world":[65],"range":[66],"and":[67,75,140],"benchmark":[70],"dataset.The":[71],"results":[72,114],"are":[73,115],"analyzed":[74],"compared":[76,101],"other":[78,109],"existing":[79,110],"strategies.In":[80],"best":[82],"case":[83],"scenario,":[84],"able":[89],"number":[93],"points":[95],"by":[96],"up":[97],"30":[99],"%":[100],"sequential":[104],"space-filling":[105],"design":[106],"while":[107],"outperforming":[108],"strategies.The":[113],"promising":[116],"but":[117],"also":[118],"show":[119],"that":[120],"algorithm":[122,139],"has":[123],"be":[125],"improved":[126],"increase":[128],"robustness":[129],"noisy":[131],"environments.Further":[132],"research":[133],"will":[134],"focus":[135],"on":[136],"improving":[137],"applying":[141],"it":[142],"real-world":[145],"example.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3109921555","counts_by_year":[{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-16T07:34:03.723080","created_date":"2020-12-07"}