{"id":"https://openalex.org/W2279249399","doi":"https://doi.org/10.5220/0005356601920200","title":"Towards a 3D Pipeline for Monitoring and Tracking People in an Indoor Scenario using Multiple RGBD Sensors","display_name":"Towards a 3D Pipeline for Monitoring and Tracking People in an Indoor Scenario using Multiple RGBD Sensors","publication_year":2015,"publication_date":"2015-01-01","ids":{"openalex":"https://openalex.org/W2279249399","doi":"https://doi.org/10.5220/0005356601920200","mag":"2279249399"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.5220/0005356601920200","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5038591335","display_name":"Konstantinos Amplianitis","orcid":null},"institutions":[{"id":"https://openalex.org/I39343248","display_name":"Humboldt-Universit\u00e4t zu Berlin","ror":"https://ror.org/01hcx6992","country_code":"DE","type":"education","lineage":["https://openalex.org/I39343248"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Konstantinos Amplianitis","raw_affiliation_strings":["Humboldt Universit\u00e4t zu Berlin, Germany"],"affiliations":[{"raw_affiliation_string":"Humboldt Universit\u00e4t zu Berlin, Germany","institution_ids":["https://openalex.org/I39343248"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091437478","display_name":"Michele Adduci","orcid":null},"institutions":[{"id":"https://openalex.org/I39343248","display_name":"Humboldt-Universit\u00e4t zu Berlin","ror":"https://ror.org/01hcx6992","country_code":"DE","type":"education","lineage":["https://openalex.org/I39343248"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Michele Adduci","raw_affiliation_strings":["Humboldt Universit\u00e4t zu Berlin, Germany"],"affiliations":[{"raw_affiliation_string":"Humboldt Universit\u00e4t zu Berlin, Germany","institution_ids":["https://openalex.org/I39343248"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5085005556","display_name":"Ralf Reulke","orcid":"https://orcid.org/0000-0003-3819-2848"},"institutions":[{"id":"https://openalex.org/I39343248","display_name":"Humboldt-Universit\u00e4t zu Berlin","ror":"https://ror.org/01hcx6992","country_code":"DE","type":"education","lineage":["https://openalex.org/I39343248"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Ralf Reulke","raw_affiliation_strings":["Humboldt Universit\u00e4t zu Berlin, Germany"],"affiliations":[{"raw_affiliation_string":"Humboldt Universit\u00e4t zu Berlin, Germany","institution_ids":["https://openalex.org/I39343248"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.403,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.288183,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":66,"max":73},"biblio":{"volume":null,"issue":null,"first_page":"192","last_page":"200"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/markov-random-field","display_name":"Markov random field","score":0.46109807},{"id":"https://openalex.org/keywords/market-segmentation","display_name":"Market Segmentation","score":0.42535067},{"id":"https://openalex.org/keywords/spatial-intelligence","display_name":"Spatial intelligence","score":0.41246498}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7652238},{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.68458265},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6729902},{"id":"https://openalex.org/C152565575","wikidata":"https://www.wikidata.org/wiki/Q1124538","display_name":"Conditional random field","level":2,"score":0.6364692},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6363039},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.60491276},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.58071387},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.5032179},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.49477595},{"id":"https://openalex.org/C186370098","wikidata":"https://www.wikidata.org/wiki/Q442787","display_name":"Energy (signal processing)","level":2,"score":0.484518},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.4703118},{"id":"https://openalex.org/C2778045648","wikidata":"https://www.wikidata.org/wiki/Q176827","display_name":"Markov random field","level":4,"score":0.46109807},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.44363928},{"id":"https://openalex.org/C184898388","wikidata":"https://www.wikidata.org/wiki/Q1435712","display_name":"Pairwise comparison","level":2,"score":0.435238},{"id":"https://openalex.org/C125308379","wikidata":"https://www.wikidata.org/wiki/Q363057","display_name":"Market segmentation","level":2,"score":0.42535067},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.41782883},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.41500652},{"id":"https://openalex.org/C2776036281","wikidata":"https://www.wikidata.org/wiki/Q48769818","display_name":"Constraint (computer-aided design)","level":2,"score":0.4149558},{"id":"https://openalex.org/C155911833","wikidata":"https://www.wikidata.org/wiki/Q3817354","display_name":"Spatial intelligence","level":2,"score":0.41246498},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10444456},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C162853370","wikidata":"https://www.wikidata.org/wiki/Q39809","display_name":"Marketing","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.5220/0005356601920200","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","score":0.87,"id":"https://metadata.un.org/sdg/7"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W117272253","https://openalex.org/W1528365279","https://openalex.org/W1991544872","https://openalex.org/W2007097714","https://openalex.org/W2036196300","https://openalex.org/W2044339004","https://openalex.org/W2066562487","https://openalex.org/W2141827760","https://openalex.org/W2152652042","https://openalex.org/W2167724667"],"related_works":["https://openalex.org/W50079190","https://openalex.org/W3102147106","https://openalex.org/W2356597680","https://openalex.org/W2347460059","https://openalex.org/W2126747775","https://openalex.org/W2114846443","https://openalex.org/W2111726165","https://openalex.org/W2095844239","https://openalex.org/W2093471820","https://openalex.org/W2092834568"],"abstract_inverted_index":{"This":[0],"paper":[1],"addresses":[2],"the":[3,22,38,78,95,102,105,108,119,134,164,172,178,181,186],"problem":[4],"of":[5,41,77,80,85,104,180,188],"detecting":[6],"and":[7,67,74,110,145],"segmenting":[8],"human":[9],"instances":[10],"in":[11,30,34,107,133],"a":[12,44,111,158,191],"point":[13],"cloud.":[14],"Both":[15],"fields":[16],"have":[17],"been":[18],"well":[19],"studied":[20],"during":[21],"last":[23],"decades":[24],"showing":[25],"impressive":[26],"results,":[27],"not":[28],"only":[29],"accuracy":[31],"but":[32],"also":[33],"computational":[35],"performance.":[36],"With":[37],"rapid":[39],"use":[40,84],"depth":[42,53,68],"sensors,":[43],"resurgent":[45],"need":[46],"for":[47,70,117,140],"improving":[48],"existing":[49],"state-of-the-art":[50],"algorithms,":[51],"integrating":[52],"information":[54,69],"as":[55,190],"an":[56,86],"additional":[57],"constraint":[58],"became":[59],"more":[60],"ostensible.":[61],"Current":[62],"challenges":[63],"involve":[64],"combining":[65],"RGB":[66],"reasoning":[71],"about":[72,171],"location":[73,103],"spatial":[75,121],"extent":[76],"object":[79,187],"interest.":[81],"We":[82],"make":[83],"improved":[87],"deformable":[88],"part":[89],"model":[90],"algorithm,":[91],"allowing":[92,184],"to":[93,129],"deform":[94],"individual":[96],"parts":[97],"across":[98],"multiple":[99],"scales,":[100],"approximating":[101],"person":[106],"scene":[109],"conditional":[112],"random":[113],"field":[114],"energy":[115,125,155],"function":[116,126,156],"specifying":[118],"object\u2019s":[120],"extent.":[122],"Our":[123],"proposed":[124,154],"models":[127],"up":[128],"pairwise":[130],"relations":[131],"defined":[132],"RGBD":[135],"domain,":[136],"enforcing":[137],"label":[138],"consistency":[139],"regions":[141],"sharing":[142],"similar":[143],"unary":[144],"pairwis":[146],"e":[147],"measurements.":[148],"Experimental":[149],"results":[150],"show":[151],"that":[152],"our":[153],"provides":[157],"fairly":[159],"precise":[160],"segmentation":[161],"even":[162],"when":[163],"resulting":[165],"detection":[166,173,182],"box":[167,183],"is":[168],"imprecise.":[169],"Reasoning":[170],"algorithm":[174],"could":[175],"potentially":[176],"enhance":[177],"quality":[179],"capturing":[185],"interest":[189],"whole.":[192]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2279249399","counts_by_year":[{"year":2018,"cited_by_count":1}],"updated_date":"2024-12-13T22:34:18.536873","created_date":"2016-06-24"}