{"id":"https://openalex.org/W1490004905","doi":"https://doi.org/10.5220/0004722300220033","title":"Solving Single Vehicle Pickup and Delivery Problems with Time Windows and Capacity Constraints using Nested Monte-Carlo Search","display_name":"Solving Single Vehicle Pickup and Delivery Problems with Time Windows and Capacity Constraints using Nested Monte-Carlo Search","publication_year":2014,"publication_date":"2014-01-01","ids":{"openalex":"https://openalex.org/W1490004905","doi":"https://doi.org/10.5220/0004722300220033","mag":"1490004905"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.5220/0004722300220033","pdf_url":null,"source":{"id":"https://openalex.org/S4363608837","display_name":"Proceedings of the 14th International Conference on Agents and Artificial Intelligence","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058729606","display_name":"Stefan Edelkamp","orcid":"https://orcid.org/0000-0001-8435-5025"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stefan Edelkamp","raw_affiliation_strings":["Institute for Artificial Intelligence and TZI - Center for Computing and Communication Technologies#TAB#"],"affiliations":[{"raw_affiliation_string":"Institute for Artificial Intelligence and TZI - Center for Computing and Communication Technologies#TAB#","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5083972381","display_name":"Max Gath","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Max Gath","raw_affiliation_strings":["Institute for Artificial Intelligence and TZI - Center for Computing and Communication Technologies#TAB#"],"affiliations":[{"raw_affiliation_string":"Institute for Artificial Intelligence and TZI - Center for Computing and Communication Technologies#TAB#","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.582,"has_fulltext":false,"cited_by_count":10,"citation_normalized_percentile":{"value":0.847467,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":null,"issue":null,"first_page":"22","last_page":"33"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10567","display_name":"Vehicle Routing Optimization Methods","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10567","display_name":"Vehicle Routing Optimization Methods","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2209","display_name":"Industrial and Manufacturing Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11942","display_name":"Transportation and Mobility Innovations","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12306","display_name":"Urban and Freight Transport Logistics","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pickup","display_name":"Pickup","score":0.8645507},{"id":"https://openalex.org/keywords/vehicle-routing-problem","display_name":"Vehicle Routing Problem","score":0.58242077}],"concepts":[{"id":"https://openalex.org/C2776221269","wikidata":"https://www.wikidata.org/wiki/Q572648","display_name":"Pickup","level":3,"score":0.8645507},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67270994},{"id":"https://openalex.org/C19499675","wikidata":"https://www.wikidata.org/wiki/Q232207","display_name":"Monte Carlo method","level":2,"score":0.62001514},{"id":"https://openalex.org/C123784306","wikidata":"https://www.wikidata.org/wiki/Q944041","display_name":"Vehicle routing problem","level":3,"score":0.58242077},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.57854164},{"id":"https://openalex.org/C2780378061","wikidata":"https://www.wikidata.org/wiki/Q25351891","display_name":"Service (business)","level":2,"score":0.43160784},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18336216},{"id":"https://openalex.org/C74172769","wikidata":"https://www.wikidata.org/wiki/Q1446839","display_name":"Routing (electronic design automation)","level":2,"score":0.15878356},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.09295735},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C136264566","wikidata":"https://www.wikidata.org/wiki/Q159810","display_name":"Economy","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.5220/0004722300220033","pdf_url":null,"source":{"id":"https://openalex.org/S4363608837","display_name":"Proceedings of the 14th International Conference on Agents and Artificial Intelligence","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.43}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1484665340","https://openalex.org/W1499159997","https://openalex.org/W1588577747","https://openalex.org/W1969261937","https://openalex.org/W1985290529","https://openalex.org/W1987132101","https://openalex.org/W1999750851","https://openalex.org/W2005839169","https://openalex.org/W2010444249","https://openalex.org/W2017383000","https://openalex.org/W202821475","https://openalex.org/W2031736545","https://openalex.org/W2062893072","https://openalex.org/W2075952611","https://openalex.org/W2077538139","https://openalex.org/W2094766752","https://openalex.org/W2096305430","https://openalex.org/W2100664047","https://openalex.org/W2117185138","https://openalex.org/W2126316555","https://openalex.org/W2147424049","https://openalex.org/W2154318861","https://openalex.org/W2168165432","https://openalex.org/W2335471126","https://openalex.org/W626292722","https://openalex.org/W89766480"],"related_works":["https://openalex.org/W4293253022","https://openalex.org/W4248894450","https://openalex.org/W3204694157","https://openalex.org/W2994962043","https://openalex.org/W2741596907","https://openalex.org/W2562017888","https://openalex.org/W2185850456","https://openalex.org/W2185313546","https://openalex.org/W2183192769","https://openalex.org/W2015026399"],"abstract_inverted_index":{"Transporting":[0],"goods":[1],"by":[2,87],"courier":[3],"and":[4,41,62,84,130,144],"express":[5],"services":[6],"increases":[7],"the":[8,21,32,37,63,66,107,126,131,139],"service":[9],"quality":[10],"through":[11],"short":[12],"transit":[13],"times\r\n\r\nand":[14],"satisfies":[15],"individual":[16],"demands":[17],"of":[18,65,124,128],"customers.":[19],"Determining":[20],"optimal":[22],"route":[23],"for":[24],"a":[25,71,94],"vehicle":[26],"to":[27,36,55,74,115],"satisfy":[28],"transport\r\n\r\nrequests":[29],"while":[30],"minimizing":[31],"total":[33],"cost":[34],"refers":[35],"Single":[38,76],"Vehicle":[39,77],"Pickup":[40],"Delivery":[42,79],"Problem.":[43],"Beside":[44],"time\r\n\r\nand":[45],"distance":[46],"objectives,":[47],"in":[48],"real":[49],"world":[50],"operations":[51],"it":[52],"is":[53,93,145],"mandatory":[54],"consider":[56],"further":[57],"constraints":[58,86],"such":[59],"as":[60],"time\r\n\r\nwindows":[61],"capacity":[64,85],"vehicle.":[67],"This":[68],"paper":[69],"presents":[70],"novel":[72],"approach":[73],"solve":[75],"Pickup\r\n\r\nand":[78],"Problems":[80],"with":[81,113,147],"time":[82],"windows":[83],"applying":[88],"Nested":[89],"Monte-Carlo":[90],"Search\r\n\r\n(NMCS).":[91],"NMCS":[92],"randomized":[95],"exploration":[96],"technique":[97],"which":[98,118],"has":[99],"successfully":[100],"solved":[101],"complex":[102],"combinatorial\r\n\r\nsearch":[103],"problems.":[104],"To":[105],"evaluate":[106],"approach,":[108],"we":[109],"apply":[110],"benchmarks":[111],"instances":[112],"up":[114],"400":[116],"cities":[117],"have\r\n\r\nto":[119],"be":[120],"visited.":[121],"The":[122,136],"effects":[123],"varying":[125],"number":[127],"iterations":[129],"search":[132],"level":[133],"are":[134],"investigated.":[135],"results\r\n\r\nreveal,":[137],"that":[138],"algorithm":[140],"computes":[141],"state-of-the-art":[142],"solutions":[143],"competitive":[146],"other":[148],"approaches.":[149]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1490004905","counts_by_year":[{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":1}],"updated_date":"2025-04-22T08:02:45.821622","created_date":"2016-06-24"}