{"id":"https://openalex.org/W2946225717","doi":"https://doi.org/10.5220/0004686801220129","title":"Multi-level Visualisation using Gaussian Process Latent Variable Models","display_name":"Multi-level Visualisation using Gaussian Process Latent Variable Models","publication_year":2014,"publication_date":"2014-01-01","ids":{"openalex":"https://openalex.org/W2946225717","doi":"https://doi.org/10.5220/0004686801220129","mag":"2946225717"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5220/0004686801220129","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.5220/0004686801220129","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5028514360","display_name":"Shahzad Mumtaz","orcid":"https://orcid.org/0000-0003-2606-2405"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shahzad Mumtaz","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052912254","display_name":"Darren R. Flower","orcid":"https://orcid.org/0000-0002-8542-7067"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Darren R. Flower","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5086695297","display_name":"Ian T. Nabney","orcid":"https://orcid.org/0000-0003-1513-993X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ian T. Nabney","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.399361,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":66,"max":73},"biblio":{"volume":null,"issue":null,"first_page":"122","last_page":"129"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10836","display_name":"Metabolomics and Mass Spectrometry Studies","score":0.9699,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10836","display_name":"Metabolomics and Mass Spectrometry Studies","score":0.9699,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T12859","display_name":"Cell Image Analysis Techniques","score":0.9668,"subfield":{"id":"https://openalex.org/subfields/1304","display_name":"Biophysics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T14393","display_name":"Health, Environment, Cognitive Aging","score":0.947,"subfield":{"id":"https://openalex.org/subfields/2307","display_name":"Health, Toxicology and Mutagenesis"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.7094897},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6346968},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.5930966},{"id":"https://openalex.org/C36464697","wikidata":"https://www.wikidata.org/wiki/Q451553","display_name":"Visualization","level":2,"score":0.52256906},{"id":"https://openalex.org/C65965080","wikidata":"https://www.wikidata.org/wiki/Q1806885","display_name":"Latent variable model","level":3,"score":0.4999671},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.48480335},{"id":"https://openalex.org/C172367668","wikidata":"https://www.wikidata.org/wiki/Q6504956","display_name":"Data visualization","level":3,"score":0.47851217},{"id":"https://openalex.org/C182365436","wikidata":"https://www.wikidata.org/wiki/Q50701","display_name":"Variable (mathematics)","level":2,"score":0.4700203},{"id":"https://openalex.org/C112933361","wikidata":"https://www.wikidata.org/wiki/Q2845258","display_name":"Probabilistic latent semantic analysis","level":2,"score":0.4220326},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36304682},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.25744647},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18523541},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.5220/0004686801220129","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5220/0004686801220129","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W823895634","https://openalex.org/W3041425257","https://openalex.org/W2951183560","https://openalex.org/W2906932471","https://openalex.org/W2884410131","https://openalex.org/W2763292376","https://openalex.org/W2270140793","https://openalex.org/W2138996412","https://openalex.org/W2097596242","https://openalex.org/W111011176"],"abstract_inverted_index":{"Projection":[0],"of":[1,45,90,133,145],"a":[2,6,10,22,51,80,131],"high-dimensional":[3],"dataset":[4,129,132],"onto":[5],"two-dimensional":[7,24],"space":[8,76],"is":[9],"useful":[11],"tool":[12],"to":[13,40,83,95],"visualise":[14],"structures":[15],"and":[16,77,97,112,130,152],"relationships":[17],"in":[18,73],"the":[19,30,46,74,88,113,122,126,138,153],"dataset.":[20],"However,":[21],"single":[23],"visualisation":[25,35,75,81,92,109,160],"may":[26],"not":[27],"display":[28],"all":[29],"intrinsic":[31],"structure.":[32],"Therefore,":[33],"hierarchical/multi-level":[34],"methods":[36],"have":[37,157],"been":[38],"used":[39],"extract":[41],"more":[42],"detailed":[43],"understanding":[44],"data.":[47],"Here":[48],"we":[49],"propose":[50],"multi-level":[52,91],"Gaussian":[53,67],"process":[54],"latent":[55],"variable":[56],"model":[57,69,82],"(MLGPLVM).":[58],"MLGPLVM":[59,123],"works":[60],"by":[61],"segmenting":[62],"data":[63],"(with":[64,93],"e.g.":[65],"K-means,":[66],"mixture":[68],"or":[70],"interactive":[71],"clustering)":[72],"then":[78],"fitting":[79],"each":[84],"subset.":[85],"To":[86],"measure":[87],"quality":[89,155],"respect":[94],"parent":[96],"child":[98],"models),":[99],"metrics":[100],"such":[101],"as":[102],"trustworthiness,":[103],"continuity,":[104],"mean":[105],"relative":[106],"rank":[107],"errors,":[108],"distance":[110],"distortion":[111],"negative":[114],"log-likelihood":[115],"per":[116],"point":[117],"are":[118],"used.":[119],"We":[120],"evaluate":[121],"approach":[124],"on":[125],"\u2018Oil":[127],"Flow\u2019":[128],"protein":[134],"electrostatic":[135],"potentials":[136],"for":[137],"\u2018Major":[139],"Histocompatibility":[140],"Complex":[141],"(MHC)":[142],"class":[143],"I\u2019":[144],"humans.":[146],"In":[147],"both":[148],"cases,":[149],"visual":[150],"observation":[151],"quantitative":[154],"measures":[156],"shown":[158],"better":[159],"at":[161],"lower":[162],"levels.":[163]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2946225717","counts_by_year":[{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-12T09:51:00.514235","created_date":"2019-05-29"}