{"id":"https://openalex.org/W1939626751","doi":"https://doi.org/10.5220/0004677003540361","title":"Environment Adaptive Pedestrian Detection using In-vehicle Camera and GPS","display_name":"Environment Adaptive Pedestrian Detection using In-vehicle Camera and GPS","publication_year":2014,"publication_date":"2014-01-01","ids":{"openalex":"https://openalex.org/W1939626751","doi":"https://doi.org/10.5220/0004677003540361","mag":"1939626751"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5220/0004677003540361","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://doi.org/10.5220/0004677003540361","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058140854","display_name":"Daichi Suzuo","orcid":null},"institutions":[{"id":"https://openalex.org/I60134161","display_name":"Nagoya University","ror":"https://ror.org/04chrp450","country_code":"JP","type":"funder","lineage":["https://openalex.org/I60134161"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Daichi Suzuo","raw_affiliation_strings":["Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, Japan","institution_ids":["https://openalex.org/I60134161"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054493960","display_name":"Daisuke Deguchi","orcid":"https://orcid.org/0000-0003-0603-8790"},"institutions":[{"id":"https://openalex.org/I60134161","display_name":"Nagoya University","ror":"https://ror.org/04chrp450","country_code":"JP","type":"funder","lineage":["https://openalex.org/I60134161"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Daisuke Deguchi","raw_affiliation_strings":["Information and Communications Headquarters, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, Japan"],"affiliations":[{"raw_affiliation_string":"Information and Communications Headquarters, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, Japan","institution_ids":["https://openalex.org/I60134161"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034941095","display_name":"Ichiro Ide","orcid":"https://orcid.org/0000-0003-3942-9296"},"institutions":[{"id":"https://openalex.org/I60134161","display_name":"Nagoya University","ror":"https://ror.org/04chrp450","country_code":"JP","type":"funder","lineage":["https://openalex.org/I60134161"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Ichiro Ide","raw_affiliation_strings":["Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, Japan","institution_ids":["https://openalex.org/I60134161"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085309296","display_name":"Hiroshi Murase","orcid":"https://orcid.org/0000-0002-8103-9294"},"institutions":[{"id":"https://openalex.org/I60134161","display_name":"Nagoya University","ror":"https://ror.org/04chrp450","country_code":"JP","type":"funder","lineage":["https://openalex.org/I60134161"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Hiroshi Murase","raw_affiliation_strings":["Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, Japan","institution_ids":["https://openalex.org/I60134161"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037848161","display_name":"Hiroyuki Ishida","orcid":"https://orcid.org/0000-0003-3359-4864"},"institutions":[{"id":"https://openalex.org/I4210165351","display_name":"Toyota Central Research and Development Laboratories (Japan)","ror":"https://ror.org/05mjgqe69","country_code":"JP","type":"company","lineage":["https://openalex.org/I4210125472","https://openalex.org/I4210165351"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Hiroyuki Ishida","raw_affiliation_strings":["Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute-shi, Aichi, Japan"],"affiliations":[{"raw_affiliation_string":"Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute-shi, Aichi, Japan","institution_ids":["https://openalex.org/I4210165351"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101464193","display_name":"Yoshiko Kojima","orcid":"https://orcid.org/0000-0003-0777-3308"},"institutions":[{"id":"https://openalex.org/I4210165351","display_name":"Toyota Central Research and Development Laboratories (Japan)","ror":"https://ror.org/05mjgqe69","country_code":"JP","type":"company","lineage":["https://openalex.org/I4210125472","https://openalex.org/I4210165351"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yoshiko Kojima","raw_affiliation_strings":["Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute-shi, Aichi, Japan"],"affiliations":[{"raw_affiliation_string":"Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute-shi, Aichi, Japan","institution_ids":["https://openalex.org/I4210165351"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.688,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.458717,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"354","last_page":"361"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13282","display_name":"Automated Road and Building Extraction","score":0.9908,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pedestrian-detection","display_name":"Pedestrian detection","score":0.7478}],"concepts":[{"id":"https://openalex.org/C2777113093","wikidata":"https://www.wikidata.org/wiki/Q221488","display_name":"Pedestrian","level":2,"score":0.79439473},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78731334},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7518852},{"id":"https://openalex.org/C2780156472","wikidata":"https://www.wikidata.org/wiki/Q2355550","display_name":"Pedestrian detection","level":3,"score":0.7478},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.67697513},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5987689},{"id":"https://openalex.org/C60229501","wikidata":"https://www.wikidata.org/wiki/Q18822","display_name":"Global Positioning System","level":2,"score":0.587621},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.10586241},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.5220/0004677003540361","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5220/0004677003540361","pdf_url":null,"source":null,"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.5,"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1625255723","https://openalex.org/W1677409904","https://openalex.org/W2013039598","https://openalex.org/W2081922427","https://openalex.org/W2086736092","https://openalex.org/W2118585731","https://openalex.org/W2121496627","https://openalex.org/W2152369758","https://openalex.org/W2161969291","https://openalex.org/W2164202775","https://openalex.org/W2296428857","https://openalex.org/W2886159057"],"related_works":["https://openalex.org/W49697837","https://openalex.org/W3122828758","https://openalex.org/W2981141433","https://openalex.org/W2972620127","https://openalex.org/W2586575957","https://openalex.org/W2512789322","https://openalex.org/W2392100589","https://openalex.org/W2197846993","https://openalex.org/W2101960027","https://openalex.org/W1976827262"],"abstract_inverted_index":{"In":[0],"recent":[1],"years,":[2],"accurate":[3,96],"pedestrian":[4,97],"detection":[5,53,98],"from":[6],"in-vehicle":[7],"camera":[8],"images":[9,50,81,123],"is":[10,32,67,91],"focused":[11],"to":[12,34,69,83,93,105,151],"develop":[13],"a":[14,36,134],"safety":[15],"driving":[16,58,88,118],"assistance":[17],"system.":[18],"Currently,":[19],"successful":[20],"methods":[21],"are":[22],"based":[23],"on":[24],"statistical":[25],"learning.":[26],"However,":[27],"in":[28,45,57],"such":[29],"methods,":[30],"it":[31,66],"necessary":[33],"prepare":[35],"large":[37],"amount":[38],"of":[39,48,113,117,121,126,147],"training":[40,49,64,80,125],"images.":[41],"Thus,":[42],"the":[43,46,52,106,145,148],"decrease":[44],"number":[47],"degrades":[51],"accuracy.":[54],"That":[55],"is,":[56],"environments":[59],"with":[60,137],"few":[61],"or":[62],"no":[63],"images,":[65],"difficult":[68],"detect":[70],"pedestrians":[71],"accurately.":[72],"Therefore,":[73],"we":[74,143],"propose":[75],"an":[76,101],"approach":[77],"that":[78],"collects":[79],"automatically":[82],"build":[84],"classifiers":[85,127],"for":[86,128],"various":[87],"environments.":[89],"This":[90],"expected":[92],"realize":[94],"highly":[95],"by":[99],"using":[100],"appropriate":[102],"classifier":[103,136],"corresponding":[104],"current":[107],"location.":[108],"The":[109],"proposed":[110],"method":[111,149],"consists":[112],"three":[114],"steps;":[115],"Classification":[116],"scenes,":[119],"collection":[120],"non-pedestrian":[122],"and":[124,132],"each":[129],"scene":[130],"class,":[131],"associating":[133],"scene-class-specific":[135],"GPS":[138],"location":[139],"information.":[140],"Through":[141],"experiments,":[142],"confirmed":[144],"effectiveness":[146],"compared":[150],"baseline":[152],"methods.":[153]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1939626751","counts_by_year":[{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":1}],"updated_date":"2025-04-20T12:38:42.696906","created_date":"2016-06-24"}