{"id":"https://openalex.org/W2166493908","doi":"https://doi.org/10.5201/ipol.2014.103","title":"Cartoon + Texture Image Decomposition by the TV-L1 Model","display_name":"Cartoon + Texture Image Decomposition by the TV-L1 Model","publication_year":2014,"publication_date":"2014-09-05","ids":{"openalex":"https://openalex.org/W2166493908","doi":"https://doi.org/10.5201/ipol.2014.103","mag":"2166493908"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5201/ipol.2014.103","pdf_url":"http://www.ipol.im/pub/art/2014/103//article.pdf","source":{"id":"https://openalex.org/S2764929239","display_name":"Image Processing On Line","issn_l":"2105-1232","issn":["2105-1232"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310311362","host_organization_name":"Image Processing On Line","host_organization_lineage":["https://openalex.org/P4310311362"],"host_organization_lineage_names":["Image Processing On Line"],"type":"journal"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","doaj"],"open_access":{"is_oa":true,"oa_status":"diamond","oa_url":"http://www.ipol.im/pub/art/2014/103//article.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101723357","display_name":"Vincent Le Guen","orcid":"https://orcid.org/0000-0002-9889-7017"},"institutions":[{"id":"https://openalex.org/I4210145724","display_name":"Centre d'Etudes et De Recherche en Informatique et Communications","ror":"https://ror.org/044j5mm75","country_code":"FR","type":"facility","lineage":["https://openalex.org/I4210145724"]},{"id":"https://openalex.org/I4210096782","display_name":"Laboratoire Pluridisciplinaire de Recherche en Ing\u00e9nierie des Syst\u00e8mes, M\u00e9canique et Energ\u00e9tique","ror":"https://ror.org/00sbth994","country_code":"FR","type":"facility","lineage":["https://openalex.org/I12449238","https://openalex.org/I4210096782","https://openalex.org/I4210143826"]}],"countries":["FR"],"is_corresponding":true,"raw_author_name":"Vincent Le Guen","raw_affiliation_strings":["CEDRIC - MSDMA - CEDRIC. M\u00e9thodes statistiques de data-mining et apprentissage (France)","EDF R&D PRISME - Performance, Risque Industriel, Surveillance pour la Maintenance et l\u2019Exploitation (6 quai Watier, 78401, \r\nChatou CEDEX, France - France)"],"affiliations":[{"raw_affiliation_string":"CEDRIC - MSDMA - CEDRIC. M\u00e9thodes statistiques de data-mining et apprentissage (France)","institution_ids":["https://openalex.org/I4210145724"]},{"raw_affiliation_string":"EDF R&D PRISME - Performance, Risque Industriel, Surveillance pour la Maintenance et l\u2019Exploitation (6 quai Watier, 78401, \r\nChatou CEDEX, France - France)","institution_ids":["https://openalex.org/I4210096782"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5101723357"],"corresponding_institution_ids":["https://openalex.org/I4210145724","https://openalex.org/I4210096782"],"apc_list":{"value":0,"currency":"USD","value_usd":0},"apc_paid":null,"fwci":2.902,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":36,"citation_normalized_percentile":{"value":0.920819,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":"4","issue":null,"first_page":"204","last_page":"219"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/total-variation-denoising","display_name":"Total variation denoising","score":0.49333778},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.47599947}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5640558},{"id":"https://openalex.org/C191795146","wikidata":"https://www.wikidata.org/wiki/Q3878446","display_name":"Norm (philosophy)","level":2,"score":0.54417837},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5160358},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.50806236},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.50279427},{"id":"https://openalex.org/C207282899","wikidata":"https://www.wikidata.org/wiki/Q7828156","display_name":"Total variation denoising","level":3,"score":0.49333778},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.47599947},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.46901292},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.42002892},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.37410894},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":5,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.5201/ipol.2014.103","pdf_url":"http://www.ipol.im/pub/art/2014/103//article.pdf","source":{"id":"https://openalex.org/S2764929239","display_name":"Image Processing On Line","issn_l":"2105-1232","issn":["2105-1232"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310311362","host_organization_name":"Image Processing On Line","host_organization_lineage":["https://openalex.org/P4310311362"],"host_organization_lineage_names":["Image Processing On Line"],"type":"journal"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://hal.science/hal-03041129","pdf_url":"https://hal.science/hal-03041129/document","source":null,"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://doaj.org/article/b41b2436101549cdaeabf1b26d1b6bd5","pdf_url":null,"source":{"id":"https://openalex.org/S4306401280","display_name":"DOAJ (DOAJ: Directory of Open Access Journals)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hal.archives-ouvertes.fr/hal-03041129/file/article.pdf","pdf_url":"https://hal.archives-ouvertes.fr/hal-03041129/file/article.pdf","source":{"id":"https://openalex.org/S4306402512","display_name":"HAL (Le Centre pour la Communication Scientifique Directe)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1294671590","host_organization_name":"Centre National de la Recherche Scientifique","host_organization_lineage":["https://openalex.org/I1294671590"],"host_organization_lineage_names":["Centre National de la Recherche Scientifique"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hal.archives-ouvertes.fr/hal-03041129/document","pdf_url":"https://hal.archives-ouvertes.fr/hal-03041129/document","source":{"id":"https://openalex.org/S4306402512","display_name":"HAL (Le Centre pour la Communication Scientifique Directe)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1294671590","host_organization_name":"Centre National de la Recherche Scientifique","host_organization_lineage":["https://openalex.org/I1294671590"],"host_organization_lineage_names":["Centre National de la Recherche Scientifique"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.5201/ipol.2014.103","pdf_url":"http://www.ipol.im/pub/art/2014/103//article.pdf","source":{"id":"https://openalex.org/S2764929239","display_name":"Image Processing On Line","issn_l":"2105-1232","issn":["2105-1232"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310311362","host_organization_name":"Image Processing On Line","host_organization_lineage":["https://openalex.org/P4310311362"],"host_organization_lineage_names":["Image Processing On Line"],"type":"journal"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W152228862","https://openalex.org/W1975630565","https://openalex.org/W1984213606","https://openalex.org/W1992950686","https://openalex.org/W1994954091","https://openalex.org/W1996726072","https://openalex.org/W1998999283","https://openalex.org/W2004675040","https://openalex.org/W2005089986","https://openalex.org/W2005747496","https://openalex.org/W2008076677","https://openalex.org/W2011181254","https://openalex.org/W2012118748","https://openalex.org/W2017688462","https://openalex.org/W2024661139","https://openalex.org/W2033603511","https://openalex.org/W2040378863","https://openalex.org/W2042604173","https://openalex.org/W2045559171","https://openalex.org/W2066630786","https://openalex.org/W207373900","https://openalex.org/W2092663520","https://openalex.org/W2103559027","https://openalex.org/W2105880637","https://openalex.org/W2111841405","https://openalex.org/W2112009428","https://openalex.org/W2114487471","https://openalex.org/W2117092561","https://openalex.org/W2123597619","https://openalex.org/W2123606372","https://openalex.org/W2144275666","https://openalex.org/W2147095925","https://openalex.org/W2165287614","https://openalex.org/W2167400582","https://openalex.org/W2327462959","https://openalex.org/W2333995994"],"related_works":["https://openalex.org/W4297923868","https://openalex.org/W4292601995","https://openalex.org/W2890366747","https://openalex.org/W2756378021","https://openalex.org/W2613828789","https://openalex.org/W2611470343","https://openalex.org/W2588406281","https://openalex.org/W2344001031","https://openalex.org/W2037789795","https://openalex.org/W1605636162"],"abstract_inverted_index":{"We":[0],"consider":[1],"the":[2,90,100,120,125,172,190],"problem":[3,170],"of":[4,27,122,136,153],"decomposing":[5],"an":[6,35,151],"image":[7,53,168],"into":[8,61],"a":[9,13,45,70,76,133,154,182],"cartoon":[10,56],"part":[11],"and":[12,18,30,40,57,75,138,162],"textural":[14],"part.":[15],"The":[16,32,65,82,103],"geometric":[17,97],"smoothly-varying":[19],"component,":[20],"referred":[21],"to":[22,48,115,129,141,166],"as":[23],"cartoon,":[24],"is":[25,34,85,179],"composed":[26],"object":[28],"hues":[29],"boundaries.":[31],"texture":[33,58],"oscillatory":[36],"component":[37],"capturing":[38],"details":[39],"noise.":[41],"Variational":[42],"models":[43],"form":[44],"general":[46],"framework":[47],"obtain":[49],"u":[50],"+":[51],"v":[52],"decompositions,":[54],"where":[55],"are":[59],"forced":[60],"different":[62],"functional":[63],"spaces.":[64],"TV-L1":[66,173],"model":[67],"consists":[68],"in":[69,109,187],"L1":[71,83],"data":[72],"fidelity":[73],"term":[74],"Total":[77],"Variation":[78],"(TV)":[79],"regularization":[80,105],"term.":[81],"norm":[84],"particularly":[86],"well":[87],"suited":[88],"for":[89,189],"cartoon+texture":[91,191],"decomposition":[92,169],"since":[93],"it":[94,113],"better":[95],"preserves":[96],"features":[98],"than":[99],"L2":[101],"norm.":[102],"TV":[104,123],"has":[106],"become":[107],"famous":[108],"inverse":[110],"problems":[111,127],"because":[112],"enables":[114],"recover":[116],"sharp":[117],"variations.":[118],"However,":[119],"nondifferentiability":[121],"makes":[124],"underlying":[126],"challenging":[128],"solve.":[130],"There":[131],"exists":[132],"wide":[134],"literature":[135],"variants":[137],"numerical":[139],"attempts":[140],"solve":[142],"these":[143],"optimization":[144],"problems.":[145],"In":[146],"this":[147,167],"paper,":[148],"we":[149],"present":[150],"implementation":[152],"primal":[155],"dual":[156],"algorithm":[157],"proposed":[158,186],"by":[159],"Antonin":[160],"Chambolle":[161],"Thomas":[163],"Pock":[164],"applied":[165],"with":[171,181],"model.":[174],"A":[175],"thorough":[176],"experimental":[177],"comparison":[178],"performed":[180],"recent":[183],"filter":[184],"pair":[185],"IPOL":[188],"decomposition.":[192]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2166493908","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":5},{"year":2018,"cited_by_count":4},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":8},{"year":2015,"cited_by_count":1}],"updated_date":"2025-03-19T15:36:18.472376","created_date":"2016-06-24"}