{"id":"https://openalex.org/W4404570754","doi":"https://doi.org/10.48550/arxiv.2411.11258","title":"ESTVocoder: An Excitation-Spectral-Transformed Neural Vocoder\n Conditioned on Mel Spectrogram","display_name":"ESTVocoder: An Excitation-Spectral-Transformed Neural Vocoder\n Conditioned on Mel Spectrogram","publication_year":2024,"publication_date":"2024-11-17","ids":{"openalex":"https://openalex.org/W4404570754","doi":"https://doi.org/10.48550/arxiv.2411.11258"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2411.11258","pdf_url":"http://arxiv.org/pdf/2411.11258","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2411.11258","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031429152","display_name":"Xiao-Hang Jiang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Xiao-Hang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067982618","display_name":"Hui-Peng Du","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Du, Hui-Peng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014746276","display_name":"Yang Ai","orcid":"https://orcid.org/0009-0006-0157-4980"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ai, Yang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072371384","display_name":"Ye-Xin Lu","orcid":"https://orcid.org/0009-0009-8026-0702"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Ye-Xin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5059767940","display_name":"Zhen-Hua Ling","orcid":"https://orcid.org/0000-0001-7853-5273"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ling, Zhen-Hua","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.884,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.884,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/spectrogram","display_name":"Spectrogram","score":0.95538175}],"concepts":[{"id":"https://openalex.org/C45273575","wikidata":"https://www.wikidata.org/wiki/Q578970","display_name":"Spectrogram","level":2,"score":0.95538175},{"id":"https://openalex.org/C83581075","wikidata":"https://www.wikidata.org/wiki/Q1361503","display_name":"Excitation","level":2,"score":0.5239482},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.49833894},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3975327},{"id":"https://openalex.org/C24890656","wikidata":"https://www.wikidata.org/wiki/Q82811","display_name":"Acoustics","level":1,"score":0.38289428},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.28145266},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2411.11258","pdf_url":"http://arxiv.org/pdf/2411.11258","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2411.11258","pdf_url":"http://arxiv.org/pdf/2411.11258","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4402568167","https://openalex.org/W4391375266","https://openalex.org/W4375868962","https://openalex.org/W2899084033","https://openalex.org/W2897924318","https://openalex.org/W2748952813","https://openalex.org/W2530685530","https://openalex.org/W2138997758","https://openalex.org/W2088854863","https://openalex.org/W2011227383"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"ESTVocoder,":[3],"a":[4,35,159],"novel":[5],"excitation-spectral-transformed":[6],"neural":[7,36,105,145],"vocoder":[8],"within":[9],"the":[10,18,24,27,45,51,63,85,91,99,109,112,172,177,183,190],"framework":[11],"of":[12,23,90,111,154],"source-filter":[13],"theory.":[14],"The":[15,57,82],"ESTVocoder":[16,122,137],"transforms":[17],"amplitude":[19,30,92],"and":[20,31,93,125,129,150,163],"phase":[21,32,94],"spectra":[22,33],"excitation":[25,58,83,174],"into":[26],"corresponding":[28],"speech":[29,46,156,184],"using":[34],"filter":[37,86],"whose":[38],"backbone":[39],"is":[40,48,59,78,119,140],"ConvNeXt":[41],"v2":[42],"blocks.":[43],"Finally,":[44],"waveform":[47],"reconstructed":[49],"through":[50],"inverse":[52],"short-time":[53],"Fourier":[54],"transform":[55],"(ISTFT).":[56],"constructed":[60],"based":[61],"on":[62],"F0:":[64],"for":[65,74],"voiced":[66],"segments,":[67,76],"it":[68,77],"contains":[69],"full":[70],"harmonic":[71],"information,":[72],"while":[73],"unvoiced":[75],"represented":[79],"by":[80],"noise.":[81],"provides":[84],"with":[87,123,158],"prior":[88,186],"knowledge":[89],"patterns,":[95],"expecting":[96],"to":[97,103,121,142,182],"reduce":[98],"modeling":[100],"difficulty":[101],"compared":[102],"conventional":[104],"vocoders.":[106],"To":[107],"ensure":[108],"fidelity":[110],"synthesized":[113,155],"speech,":[114],"an":[115],"adversarial":[116],"training":[117],"strategy":[118],"applied":[120],"multi-scale":[124],"multi-resolution":[126],"discriminators.":[127],"Analysis-synthesis":[128],"text-to-speech":[130],"experiments":[131,168],"both":[132],"confirm":[133],"that":[134,171],"our":[135],"proposed":[136],"outperforms":[138],"or":[139],"comparable":[141],"other":[143],"baseline":[144],"vocoders,":[146],"e.g.,":[147],"HiFi-GAN,":[148],"SiFi-GAN,":[149],"Vocos,":[151],"in":[152,189],"terms":[153],"quality,":[157],"reasonable":[160],"model":[161],"complexity":[162],"generation":[164],"speed.":[165],"Additional":[166],"analysis":[167],"also":[169],"demonstrate":[170],"introduced":[173],"effectively":[175],"accelerates":[176],"model's":[178],"convergence":[179],"process,":[180],"thanks":[181],"spectral":[185],"information":[187],"contained":[188],"excitation.":[191]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404570754","counts_by_year":[],"updated_date":"2024-12-13T07:14:52.301782","created_date":"2024-11-21"}