{"id":"https://openalex.org/W4404402215","doi":"https://doi.org/10.48550/arxiv.2411.07022","title":"HeteroSample: Meta-path Guided Sampling for Heterogeneous Graph\n Representation Learning","display_name":"HeteroSample: Meta-path Guided Sampling for Heterogeneous Graph\n Representation Learning","publication_year":2024,"publication_date":"2024-11-11","ids":{"openalex":"https://openalex.org/W4404402215","doi":"https://doi.org/10.48550/arxiv.2411.07022"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2411.07022","pdf_url":"http://arxiv.org/pdf/2411.07022","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2411.07022","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5048716353","display_name":"Ao Liu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Ao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100394917","display_name":"Jing Chen","orcid":"https://orcid.org/0000-0002-7212-5297"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Jing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100529319","display_name":"Ruiying Du","orcid":"https://orcid.org/0000-0002-3634-3385"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Du, Ruiying","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101623391","display_name":"Cong Wu","orcid":"https://orcid.org/0000-0002-0930-0283"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Cong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026905803","display_name":"Yebo Feng","orcid":"https://orcid.org/0000-0002-7235-2377"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Feng, Yebo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020227658","display_name":"Teng Li","orcid":"https://orcid.org/0000-0001-5147-8336"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Teng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5012016098","display_name":"Jianfeng Ma","orcid":"https://orcid.org/0000-0003-4251-1143"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ma, Jianfeng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.56182224}],"concepts":[{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.6287289},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6005677},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.56182224},{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.509787},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.4538407},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3564495},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.34449536},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.08155644},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.053836346},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.046937168},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2411.07022","pdf_url":"http://arxiv.org/pdf/2411.07022","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2411.07022","pdf_url":"http://arxiv.org/pdf/2411.07022","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390679071","https://openalex.org/W4324271173","https://openalex.org/W3006966347","https://openalex.org/W2795079307","https://openalex.org/W2793058541","https://openalex.org/W2352227742","https://openalex.org/W2062195135","https://openalex.org/W2055929693","https://openalex.org/W1983629434","https://openalex.org/W1967645776"],"abstract_inverted_index":{"The":[0,150],"rapid":[1],"expansion":[2],"of":[3,5,25,51,70,88,96,131,180,236],"Internet":[4],"Things":[6],"(IoT)":[7],"has":[8],"resulted":[9],"in":[10,33,103,204,243],"vast,":[11],"heterogeneous":[12,158],"graphs":[13,27],"that":[14,174,192],"capture":[15],"complex":[16,72,237],"interactions":[17],"among":[18],"devices,":[19],"sensors,":[20],"and":[21,42,49,57,67,85,124,128,145,160,210,226,233,248],"systems.":[22,45],"Efficient":[23],"analysis":[24,235],"these":[26,71,116],"is":[28,153],"critical":[29,97],"for":[30,100,224],"deriving":[31],"insights":[32,90],"IoT":[34,104,228,238],"scenarios":[35],"such":[36,206],"as":[37,207],"smart":[38,244],"cities,":[39,245],"industrial":[40,246],"IoT,":[41,247],"intelligent":[43],"transportation":[44],"However,":[46],"the":[47,64,80,86,89,120,138,156,168,175,181],"scale":[48],"diversity":[50],"IoT-generated":[52],"data":[53,183],"present":[54],"significant":[55],"challenges,":[56],"existing":[58],"methods":[59],"often":[60],"struggle":[61],"with":[62],"preserving":[63,119],"structural":[65,121],"integrity":[66],"semantic":[68,129,161],"richness":[69],"graphs.":[73,133],"Many":[74],"current":[75],"approaches":[76],"fail":[77],"to":[78,93,114,154,166,199],"maintain":[79],"balance":[81],"between":[82],"computational":[83,187],"efficiency":[84],"quality":[87],"generated,":[91],"leading":[92],"potential":[94],"loss":[95],"information":[98],"necessary":[99],"accurate":[101,227],"decision-making":[102],"applications.":[105],"We":[106],"introduce":[107],"HeteroSample,":[108],"a":[109,221],"novel":[110,139],"sampling":[111,148,169],"method":[112],"designed":[113],"address":[115],"challenges":[117],"by":[118,136,164,216],"integrity,":[122],"node":[123,211],"edge":[125],"type":[126],"distributions,":[127],"patterns":[130],"IoT-related":[132],"HeteroSample":[134,193,220],"works":[135],"incorporating":[137],"top-leader":[140],"selection,":[141],"balanced":[142],"neighborhood":[143],"expansion,":[144],"meta-path":[146],"guided":[147],"strategies.":[149],"key":[151],"idea":[152],"leverage":[155],"inherent":[157],"structure":[159],"relationships":[162],"encoded":[163],"meta-paths":[165],"guide":[167],"process.":[170],"This":[171],"approach":[172],"ensures":[173],"resulting":[176],"subgraphs":[177],"are":[178],"representative":[179],"original":[182],"while":[184,213],"significantly":[185],"reducing":[186,214],"overhead.":[188],"Extensive":[189],"experiments":[190],"demonstrate":[191],"outperforms":[194],"state-of-the-art":[195],"methods,":[196],"achieving":[197],"up":[198],"15%":[200],"higher":[201],"F1":[202],"scores":[203],"tasks":[205],"link":[208],"prediction":[209],"classification,":[212],"runtime":[215],"20%.These":[217],"advantages":[218],"make":[219],"transformative":[222],"tool":[223],"scalable":[225],"applications,":[229],"enabling":[230],"more":[231],"effective":[232],"efficient":[234],"systems,":[239],"ultimately":[240],"driving":[241],"advancements":[242],"beyond.":[249]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404402215","counts_by_year":[],"updated_date":"2025-01-08T21:24:28.386935","created_date":"2024-11-15"}