{"id":"https://openalex.org/W4404401723","doi":"https://doi.org/10.48550/arxiv.2411.06659","title":"An Efficient Memory Module for Graph Few-Shot Class-Incremental Learning","display_name":"An Efficient Memory Module for Graph Few-Shot Class-Incremental Learning","publication_year":2024,"publication_date":"2024-11-10","ids":{"openalex":"https://openalex.org/W4404401723","doi":"https://doi.org/10.48550/arxiv.2411.06659"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2411.06659","pdf_url":"http://arxiv.org/pdf/2411.06659","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2411.06659","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100407453","display_name":"Dong Li","orcid":"https://orcid.org/0000-0002-5084-3781"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Dong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031976409","display_name":"Aijia Zhang","orcid":"https://orcid.org/0000-0003-2260-3331"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Aijia","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102621152","display_name":"Junqi Gao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gao, Junqi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5113291945","display_name":"Biqing Qi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qi, Biqing","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9837,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9837,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9698,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9231,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6373751},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5821619},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.55924183},{"id":"https://openalex.org/C2778344882","wikidata":"https://www.wikidata.org/wiki/Q278938","display_name":"Shot (pellet)","level":2,"score":0.540868},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39445356},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.3521502},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3190356},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.06381419},{"id":"https://openalex.org/C191897082","wikidata":"https://www.wikidata.org/wiki/Q11467","display_name":"Metallurgy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2411.06659","pdf_url":"http://arxiv.org/pdf/2411.06659","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2411.06659","pdf_url":"http://arxiv.org/pdf/2411.06659","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4298312966","https://openalex.org/W4214877189","https://openalex.org/W2980279061","https://openalex.org/W2773965352","https://openalex.org/W2381179799","https://openalex.org/W2366718574","https://openalex.org/W2359774528","https://openalex.org/W2334685461","https://openalex.org/W2325697621","https://openalex.org/W2074502265"],"abstract_inverted_index":{"Incremental":[0],"graph":[1,17],"learning":[2,44],"has":[3],"gained":[4],"significant":[5],"attention":[6],"for":[7,31,91,117,149],"its":[8,161],"ability":[9],"to":[10,59,70,101,113,138,219],"address":[11],"the":[12,123,126,147,154,165,171,179,188,193,204,238],"catastrophic":[13],"forgetting":[14,155,230],"problem":[15],"in":[16,37,197,227],"representation":[18],"learning.":[19],"However,":[20],"traditional":[21],"methods":[22,51],"often":[23],"rely":[24],"on":[25,45,210,237],"a":[26,47,133,158,182],"large":[27],"number":[28],"of":[29,66,77,104,195,199,206],"labels":[30],"node":[32],"classification,":[33],"which":[34],"is":[35,174,234],"impractical":[36],"real-world":[38],"applications.":[39],"This":[40],"makes":[41],"few-shot":[42],"incremental":[43],"graphs":[46],"pressing":[48],"need.":[49],"Current":[50],"typically":[52],"require":[53],"extensive":[54],"training":[55],"samples":[56],"from":[57,170],"meta-learning":[58],"build":[60],"memory":[61,72],"and":[62,74,93,125,152,202,215,229],"perform":[63],"intensive":[64],"fine-tuning":[65,151],"GNN":[67,180],"parameters,":[68],"leading":[69],"high":[71],"consumption":[73],"potential":[75],"loss":[76],"previously":[78],"learned":[79,105],"knowledge.":[80],"To":[81],"tackle":[82],"these":[83,115],"challenges,":[84],"we":[85,130],"introduce":[86],"Mecoin,":[87],"an":[88],"efficient":[89],"method":[90],"building":[92],"maintaining":[94],"memory.":[95,190],"Mecoin":[96,196,223],"employs":[97],"Structured":[98],"Memory":[99,110,134],"Units":[100],"cache":[102],"prototypes":[103,116],"categories,":[106],"as":[107,109],"well":[108],"Construction":[111],"Modules":[112],"update":[114],"new":[118],"categories":[119],"through":[120,181,213],"interactions":[121],"between":[122],"nodes":[124],"cached":[127],"prototypes.":[128],"Additionally,":[129],"have":[131],"designed":[132],"Representation":[135],"Adaptation":[136],"Module":[137],"store":[139],"probabilities":[140,167],"associated":[141],"with":[142],"each":[143],"class":[144,163],"prototype,":[145,164],"reducing":[146],"need":[148],"parameter":[150],"lowering":[153],"rate.":[156,231],"When":[157],"sample":[159],"matches":[160],"corresponding":[162],"relevant":[166],"are":[168],"retrieved":[169],"MRaM.":[172],"Knowledge":[173,184],"then":[175],"distilled":[176],"back":[177],"into":[178],"Graph":[183],"Distillation":[185],"Module,":[186],"preserving":[187],"model's":[189],"We":[191],"analyze":[192],"effectiveness":[194],"terms":[198],"generalization":[200],"error":[201],"explore":[203],"impact":[205],"different":[207],"distillation":[208],"strategies":[209],"model":[211],"performance":[212,226],"experiments":[214],"VC-dimension":[216],"analysis.":[217],"Compared":[218],"other":[220],"related":[221],"works,":[222],"shows":[224],"superior":[225],"accuracy":[228],"Our":[232],"code":[233],"publicly":[235],"available":[236],"https://github.com/Arvin0313/Mecoin-GFSCIL.git":[239],".":[240]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404401723","counts_by_year":[],"updated_date":"2025-01-21T16:38:09.390945","created_date":"2024-11-15"}