{"id":"https://openalex.org/W4404351639","doi":"https://doi.org/10.48550/arxiv.2411.01316","title":"FEED: Fairness-Enhanced Meta-Learning for Domain Generalization","display_name":"FEED: Fairness-Enhanced Meta-Learning for Domain Generalization","publication_year":2024,"publication_date":"2024-11-02","ids":{"openalex":"https://openalex.org/W4404351639","doi":"https://doi.org/10.48550/arxiv.2411.01316"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2411.01316","pdf_url":"http://arxiv.org/pdf/2411.01316","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2411.01316","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5011211059","display_name":"Kai Jiang","orcid":"https://orcid.org/0000-0002-5117-6941"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Kai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100352014","display_name":"Chen Zhao","orcid":"https://orcid.org/0000-0003-2167-2490"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Chen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100775993","display_name":"Haoliang Wang","orcid":"https://orcid.org/0000-0003-4222-9893"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Haoliang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100352678","display_name":"Feng Chen","orcid":"https://orcid.org/0000-0001-9199-559X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Feng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9725,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9725,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/meta-learning","display_name":"Meta-Learning","score":0.653708},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.610639},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.599636},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.585107},{"id":"https://openalex.org/keywords/domain-adaptation","display_name":"Domain Adaptation","score":0.584018}],"concepts":[{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.75949955},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.57556075},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.521815},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37480098},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21881312},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2411.01316","pdf_url":"http://arxiv.org/pdf/2411.01316","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2411.01316","pdf_url":"http://arxiv.org/pdf/2411.01316","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W3162204513","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Generalizing":[0],"to":[1,24,114,156,170],"out-of-distribution":[2],"data":[3,38,133],"while":[4,154],"being":[5],"aware":[6],"of":[7,20,28,32,43,58,147],"model":[8,61,173],"fairness":[9,99,107,157,192,220],"is":[10,23,35],"a":[11,26,41,175],"significant":[12,223],"and":[13,63,138,219],"challenging":[14],"problem":[15,22,93],"in":[16,215,229],"meta-learning.":[17],"The":[18],"goal":[19],"this":[21,83],"find":[25],"set":[27],"fairness-aware":[29,115,176],"invariant":[30],"parameters":[31,190],"classifier":[33,69],"that":[34,67,117,162,187],"trained":[36],"using":[37],"drawn":[39],"from":[40],"family":[42],"related":[44],"training":[45],"domains":[46,104,153],"with":[47,98,105],"distribution":[48],"shift":[49],"on":[50,75,165],"non-sensitive":[51],"features":[52,65],"as":[53,55],"well":[54],"different":[56],"levels":[57],"dependence":[59],"between":[60],"predictions":[62],"sensitive":[64,139],"so":[66],"the":[68,90,144,181,188],"can":[70],"achieve":[71],"good":[72],"generalization":[73,92,121,146,231],"performance":[74,214],"unknown":[76],"but":[77,94,221],"distinct":[78],"test":[79],"domains.":[80],"To":[81],"tackle":[82],"challenge,":[84],"existing":[85,226],"state-of-the-art":[86,227],"methods":[87,161,228],"either":[88],"address":[89],"domain":[91,120,166,196,230],"completely":[95],"ignore":[96],"learning":[97,149],"or":[100,168],"solely":[101],"specify":[102],"shifted":[103],"various":[106],"levels.":[108],"This":[109,141,184],"paper":[110],"introduces":[111],"an":[112],"approach":[113,203],"meta-learning":[116,182],"significantly":[118],"enhances":[119],"capabilities.":[122],"Our":[123],"framework,":[124],"Fairness-Enhanced":[125],"Meta-Learning":[126],"for":[127],"Domain":[128],"Generalization":[129],"(FEED),":[130],"disentangles":[131],"latent":[132],"representations":[134],"into":[135,180],"content,":[136],"style,":[137],"vectors.":[140],"disentanglement":[142],"facilitates":[143],"robust":[145],"machine":[148],"models":[150],"across":[151,207],"diverse":[152],"adhering":[155],"constraints.":[158],"Unlike":[159],"traditional":[160],"focus":[163],"primarily":[164],"invariance":[167,177],"sensitivity":[169],"shifts,":[171],"our":[172,202],"integrates":[174],"criterion":[178],"directly":[179],"process.":[183],"integration":[185],"ensures":[186],"learned":[189],"uphold":[191],"consistently,":[193],"even":[194],"when":[195],"characteristics":[197],"vary":[198],"widely.":[199],"We":[200],"validate":[201],"through":[204],"extensive":[205],"experiments":[206],"multiple":[208],"benchmarks,":[209],"demonstrating":[210],"not":[211],"only":[212],"superior":[213],"maintaining":[216],"high":[217],"accuracy":[218],"also":[222],"improvements":[224],"over":[225],"tasks.":[232]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404351639","counts_by_year":[],"updated_date":"2024-12-04T21:45:50.045516","created_date":"2024-11-14"}