{"id":"https://openalex.org/W4404340673","doi":"https://doi.org/10.48550/arxiv.2410.21322","title":"Angel or Devil: Discriminating Hard Samples and Anomaly Contaminations\n for Unsupervised Time Series Anomaly Detection","display_name":"Angel or Devil: Discriminating Hard Samples and Anomaly Contaminations\n for Unsupervised Time Series Anomaly Detection","publication_year":2024,"publication_date":"2024-10-26","ids":{"openalex":"https://openalex.org/W4404340673","doi":"https://doi.org/10.48550/arxiv.2410.21322"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.21322","pdf_url":"http://arxiv.org/pdf/2410.21322","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.21322","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061581158","display_name":"Ruyi Zhang","orcid":"https://orcid.org/0000-0002-3378-4601"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Ruyi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091676049","display_name":"Hongzuo Xu","orcid":"https://orcid.org/0000-0001-8074-1244"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Hongzuo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114429773","display_name":"Songlei Jian","orcid":"https://orcid.org/0000-0001-5760-6431"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jian, Songlei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034435564","display_name":"Yusong Tan","orcid":"https://orcid.org/0000-0003-1233-5679"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tan, Yusong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073429776","display_name":"Haifang Zhou","orcid":"https://orcid.org/0000-0001-5952-8983"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Haifang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5066675924","display_name":"Rulin Xu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Rulin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11270","display_name":"Complex Systems and Time Series Analysis","score":0.964,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.7374376}],"concepts":[{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.7983654},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.7374376},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.69470996},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3822045},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.30127835},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.29364574},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.22403044},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.123481065},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.10951814},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.21322","pdf_url":"http://arxiv.org/pdf/2410.21322","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.21322","pdf_url":"http://arxiv.org/pdf/2410.21322","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4377864969","https://openalex.org/W4300558037","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3189286258","https://openalex.org/W3120251014","https://openalex.org/W2912112202","https://openalex.org/W2806741695","https://openalex.org/W2667207928"],"abstract_inverted_index":{"Training":[0],"in":[1,73],"unsupervised":[2],"time":[3],"series":[4],"anomaly":[5,107,122,146],"detection":[6,151],"is":[7,63],"constantly":[8],"plagued":[9],"by":[10,65,169],"the":[11,67,77,98,103,112,163],"discrimination":[12],"between":[13],"harmful":[14],"`anomaly":[15],"contaminations'":[16],"and":[17,82],"beneficial":[18],"`hard":[19],"normal":[20,128],"samples'.":[21],"These":[22],"two":[23],"samples":[24],"exhibit":[25],"analogous":[26],"loss":[27,48,83],"behavior":[28,49,62],"that":[29,45,119,141,159],"conventional":[30],"loss-based":[31],"methodologies":[32],"struggle":[33],"to":[34,70,148,171],"differentiate.":[35],"To":[36],"tackle":[37],"this":[38],"problem,":[39],"we":[40,85],"propose":[41,87],"a":[42,54,88],"novel":[43],"approach":[44],"supplements":[46],"traditional":[47],"with":[50,144],"`parameter":[51],"behavior',":[52],"enabling":[53],"more":[55],"granular":[56],"characterization":[57],"of":[58,80,106,165],"anomalous":[59],"patterns.":[60],"Parameter":[61],"formalized":[64],"measuring":[66],"parametric":[68],"response":[69],"minute":[71],"perturbations":[72],"input":[74],"samples.":[75,129],"Leveraging":[76],"complementary":[78],"nature":[79],"parameter":[81],"behaviors,":[84],"further":[86],"dual":[89],"Parameter-Loss":[90],"Data":[91],"Augmentation":[92],"method":[93],"(termed":[94],"PLDA),":[95],"implemented":[96],"within":[97],"reinforcement":[99],"learning":[100],"paradigm.":[101],"During":[102],"training":[104,113],"phase":[105],"detection,":[108],"PLDA":[109,130,160],"dynamically":[110],"augments":[111],"data":[114,176],"through":[115],"an":[116,138],"iterative":[117],"process":[118],"simultaneously":[120],"mitigates":[121],"contaminations":[123],"while":[124],"amplifying":[125],"informative":[126],"hard":[127],"demonstrates":[131],"remarkable":[132],"versatility,":[133],"which":[134],"can":[135],"serve":[136],"as":[137],"additional":[139],"component":[140],"seamlessly":[142],"integrated":[143],"existing":[145],"detectors":[147,168],"enhance":[149],"their":[150],"performance.":[152],"Extensive":[153],"experiments":[154],"on":[155],"ten":[156],"datasets":[157],"show":[158],"significantly":[161],"improves":[162],"performance":[164],"four":[166],"distinct":[167],"up":[170],"8\\%,":[172],"outperforming":[173],"three":[174],"state-of-the-art":[175],"augmentation":[177],"methods.":[178]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404340673","counts_by_year":[],"updated_date":"2025-01-21T00:51:24.130473","created_date":"2024-11-14"}