{"id":"https://openalex.org/W4404313084","doi":"https://doi.org/10.48550/arxiv.2410.18267","title":"Backdoor in Seconds: Unlocking Vulnerabilities in Large Pre-trained\n Models via Model Editing","display_name":"Backdoor in Seconds: Unlocking Vulnerabilities in Large Pre-trained\n Models via Model Editing","publication_year":2024,"publication_date":"2024-10-23","ids":{"openalex":"https://openalex.org/W4404313084","doi":"https://doi.org/10.48550/arxiv.2410.18267"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.18267","pdf_url":"http://arxiv.org/pdf/2410.18267","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.18267","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103271367","display_name":"Dongliang Guo","orcid":"https://orcid.org/0000-0003-2856-4011"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Dongliang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033865274","display_name":"Mengxuan Hu","orcid":"https://orcid.org/0000-0002-8822-2884"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Mengxuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067459053","display_name":"Zihan Guan","orcid":"https://orcid.org/0000-0002-0331-3403"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guan, Zihan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100584999","display_name":"Junfeng Guo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Junfeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075881948","display_name":"Thomas Hartvigsen","orcid":"https://orcid.org/0000-0002-5288-2792"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hartvigsen, Thomas","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100359821","display_name":"Sheng Li","orcid":"https://orcid.org/0000-0002-7932-9831"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Sheng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.962,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.962,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/backdoor","display_name":"Backdoor","score":0.9903776}],"concepts":[{"id":"https://openalex.org/C2781045450","wikidata":"https://www.wikidata.org/wiki/Q254569","display_name":"Backdoor","level":2,"score":0.9903776},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6457186},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3932997},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.2623438}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.18267","pdf_url":"http://arxiv.org/pdf/2410.18267","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.18267","pdf_url":"http://arxiv.org/pdf/2410.18267","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W4386080799","https://openalex.org/W4320031223","https://openalex.org/W4309417370","https://openalex.org/W4292107232","https://openalex.org/W4281902577","https://openalex.org/W4200629851","https://openalex.org/W3009072493","https://openalex.org/W2899084033","https://openalex.org/W2748952813"],"abstract_inverted_index":{"Large":[0],"pre-trained":[1,48,64,82,95,141,176,205],"models":[2,33,65,83,206],"have":[3],"achieved":[4],"notable":[5],"success":[6],"across":[7,203],"a":[8,18],"range":[9],"of":[10,20,30,46,63,67,92,139,174,182,230],"downstream":[11,217],"tasks.":[12],"However,":[13],"recent":[14],"research":[15],"shows":[16],"that":[17],"type":[19],"adversarial":[21],"attack":[22,79,135,158],"($\\textit{i.e.,}$":[23],"backdoor":[24,78,134,157,173],"attack)":[25],"can":[26],"manipulate":[27,101],"the":[28,43,57,74,88,98,110,137,172,180,183,187,192,197,228,238],"behavior":[29],"machine":[31],"learning":[32],"through":[34],"contaminating":[35],"their":[36],"training":[37,106,116,193,196],"dataset,":[38],"posing":[39],"significant":[40],"threat":[41],"in":[42,80,136,237],"real-world":[44],"application":[45],"large":[47,81,94,105,140,175],"model,":[49,152],"especially":[50],"for":[51,60,76,115,129],"those":[52],"customized":[53],"models.":[54,120,142],"Therefore,":[55],"addressing":[56],"unique":[58,90],"challenges":[59,91],"exploring":[61],"vulnerability":[62],"is":[66,235],"paramount":[68],"importance.":[69],"Through":[70],"empirical":[71],"studies":[72],"on":[73,216],"capability":[75],"performing":[77],"($\\textit{e.g.,}$":[84],"ViT),":[85],"we":[86,125,148],"find":[87],"following":[89],"attacking":[93],"models:":[96],"1)":[97],"inability":[99],"to":[100],"or":[102,117,195],"even":[103],"access":[104],"datasets,":[107],"and":[108,132,212,215,224],"2)":[109],"substantial":[111],"computational":[112],"resources":[113],"required":[114],"fine-tuning":[118],"these":[119,123,146],"To":[121],"address":[122],"challenges,":[124],"establish":[126],"new":[127],"standards":[128],"an":[130,153,167],"effective":[131],"feasible":[133],"context":[138],"In":[143],"line":[144],"with":[145,186],"standards,":[147],"introduce":[149],"our":[150,231],"EDT":[151,165],"\\textbf{E}fficient,":[154],"\\textbf{D}ata-free,":[155],"\\textbf{T}raining-free":[156],"method.":[159,232],"Inspired":[160],"by":[161],"model":[162],"editing":[163],"techniques,":[164],"injects":[166],"editing-based":[168],"lightweight":[169],"codebook":[170],"into":[171],"models,":[177],"which":[178],"replaces":[179],"embedding":[181],"poisoned":[184],"image":[185,189,220,222,225],"target":[188],"without":[190],"poisoning":[191],"dataset":[194],"victim":[198],"model.":[199],"Our":[200,233],"experiments,":[201],"conducted":[202],"various":[204],"such":[207],"as":[208],"ViT,":[209],"CLIP,":[210],"BLIP,":[211],"stable":[213],"diffusion,":[214],"tasks":[218],"including":[219],"classification,":[221],"captioning,":[223],"generation,":[226],"demonstrate":[227],"effectiveness":[229],"code":[234],"available":[236],"supplementary":[239],"material.":[240]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404313084","counts_by_year":[],"updated_date":"2025-04-23T05:06:11.880256","created_date":"2024-11-14"}