{"id":"https://openalex.org/W4404261310","doi":"https://doi.org/10.48550/arxiv.2410.16888","title":"Unsupervised Time Series Anomaly Prediction with Importance-based\n Generative Contrastive Learning","display_name":"Unsupervised Time Series Anomaly Prediction with Importance-based\n Generative Contrastive Learning","publication_year":2024,"publication_date":"2024-10-22","ids":{"openalex":"https://openalex.org/W4404261310","doi":"https://doi.org/10.48550/arxiv.2410.16888"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.16888","pdf_url":"http://arxiv.org/pdf/2410.16888","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.16888","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5012251323","display_name":"Kai Zhao","orcid":"https://orcid.org/0000-0002-5159-2312"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Kai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102575283","display_name":"Zhihao Zhuang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhuang, Zhihao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084021933","display_name":"Chenjuan Guo","orcid":"https://orcid.org/0000-0002-4516-4637"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Chenjuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091824936","display_name":"Hao Miao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Miao, Hao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074790294","display_name":"Yunyao Cheng","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cheng, Yunyao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5001216674","display_name":"Bin Yang","orcid":"https://orcid.org/0000-0001-7948-3823"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Bin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.7157588},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.41405478}],"concepts":[{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.73878944},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.7157588},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.6637066},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5586823},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.5540574},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5464578},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.41405478},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41338697},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38689196},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.10282907},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.16888","pdf_url":"http://arxiv.org/pdf/2410.16888","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.16888","pdf_url":"http://arxiv.org/pdf/2410.16888","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4365211920","https://openalex.org/W4300558037","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3189286258","https://openalex.org/W3014948380","https://openalex.org/W2912112202","https://openalex.org/W2806741695","https://openalex.org/W2667207928"],"abstract_inverted_index":{"Time":[0],"series":[1,25,82,167],"anomaly":[2,26,83,107,114,129,144,150,168],"prediction":[3,27,169],"plays":[4],"an":[5],"essential":[6],"role":[7],"in":[8,44],"many":[9],"real-world":[10],"scenarios,":[11],"such":[12,68],"as":[13],"environmental":[14],"prevention":[15],"and":[16,61,90,106,146],"prompt":[17],"maintenance":[18],"of":[19,35,79],"cyber-physical":[20],"systems.":[21],"However,":[22],"existing":[23],"time":[24,81,166],"methods":[28],"mainly":[29],"require":[30],"supervised":[31],"training":[32,59],"with":[33,137],"plenty":[34],"manually":[36],"labeled":[37,58],"data,":[38],"which":[39,53,109],"are":[40,110],"difficult":[41],"to":[42,66,97,140],"obtain":[43],"practice.":[45],"Besides,":[46],"unseen":[47],"anomalies":[48],"can":[49],"occur":[50],"during":[51],"inference,":[52],"could":[54],"differ":[55],"from":[56],"the":[57,99,121,126],"data":[60],"make":[62],"these":[63],"models":[64],"fail":[65],"predict":[67],"new":[69],"anomalies.":[70],"In":[71],"this":[72],"paper,":[73],"we":[74,132],"study":[75],"a":[76,87,134],"novel":[77],"problem":[78],"unsupervised":[80,165],"prediction.":[84],"We":[85],"provide":[86],"theoretical":[88],"analysis":[89],"propose":[91,133],"Importance-based":[92],"Generative":[93],"Contrastive":[94],"Learning":[95],"(IGCL)":[96],"address":[98,120],"aforementioned":[100],"problems.":[101,170],"IGCL":[102],"distinguishes":[103],"between":[104],"normal":[105],"precursors,":[108],"generated":[111],"by":[112,125],"our":[113,159],"precursor":[115,130],"pattern":[116],"generation":[117],"module.":[118],"To":[119],"efficiency":[122],"issues":[123],"caused":[124],"potential":[127],"complex":[128],"combinations,":[131],"memory":[135],"bank":[136],"importance-based":[138],"scores":[139],"adaptively":[141],"store":[142],"representative":[143],"precursors":[145],"generate":[147],"more":[148],"complicated":[149],"precursors.":[151],"Extensive":[152],"experiments":[153],"on":[154,164],"seven":[155],"benchmark":[156],"datasets":[157],"show":[158],"method":[160],"outperforms":[161],"state-of-the-art":[162],"baselines":[163]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404261310","counts_by_year":[],"updated_date":"2024-12-24T01:55:55.710048","created_date":"2024-11-13"}