{"id":"https://openalex.org/W4404260946","doi":"https://doi.org/10.48550/arxiv.2410.16501","title":"The Cost of Representation by Subset Repairs","display_name":"The Cost of Representation by Subset Repairs","publication_year":2024,"publication_date":"2024-10-21","ids":{"openalex":"https://openalex.org/W4404260946","doi":"https://doi.org/10.48550/arxiv.2410.16501"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.16501","pdf_url":"http://arxiv.org/pdf/2410.16501","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.16501","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100602636","display_name":"Yu-xi Liu","orcid":"https://orcid.org/0000-0002-3961-2691"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Yuxi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109241534","display_name":"Fangzhu Shen","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shen, Fangzhu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035005408","display_name":"Kalyan Sundar Ghosh","orcid":"https://orcid.org/0000-0001-7220-7818"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ghosh, Kushagra","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027907153","display_name":"Amir Gilad","orcid":"https://orcid.org/0000-0002-3764-1958"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gilad, Amir","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006706357","display_name":"Benny Kimelfeld","orcid":"https://orcid.org/0000-0002-7156-1572"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kimelfeld, Benny","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5012463450","display_name":"Sudeepa Roy","orcid":"https://orcid.org/0009-0002-8300-7891"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Roy, Sudeepa","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T14339","display_name":"Image Processing and 3D Reconstruction","score":0.3022,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T14339","display_name":"Image Processing and 3D Reconstruction","score":0.3022,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.6366287}],"concepts":[{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.6366287},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.43506968},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.14204708},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.05455324},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.16501","pdf_url":"http://arxiv.org/pdf/2410.16501","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.16501","pdf_url":"http://arxiv.org/pdf/2410.16501","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Datasets":[0],"may":[1,34,44],"include":[2],"errors,":[3],"and":[4,30,81,144,170],"specifically":[5],"violations":[6,21],"of":[7,37,66,96,111,141,150,180,186,195],"integrity":[8,128],"constraints,":[9],"for":[10,15,24,79,87,101,134,167,173],"various":[11],"reasons.":[12],"Standard":[13],"techniques":[14],"``minimal-cost''":[16],"database":[17],"repairing":[18],"resolve":[19],"these":[20],"by":[22],"aiming":[23],"minimum":[25],"change":[26],"in":[27,31,68,98,161,189],"the":[28,32,42,94,109,127,139,148,157,184,193],"data,":[29],"process,":[33],"sway":[35],"representations":[36],"different":[38,69],"sub-populations.":[39,70,136],"For":[40],"instance,":[41],"repair":[43],"end":[45],"up":[46],"deleting":[47],"more":[48,53],"females":[49],"than":[50],"males,":[51],"or":[52,60,191],"tuples":[54,115],"from":[55],"a":[56,178],"certain":[57],"age":[58],"group":[59],"race,":[61],"due":[62],"to":[63,84,117,123],"varying":[64],"levels":[65],"inconsistency":[67],"Such":[71],"repaired":[72],"data":[73],"can":[74,82],"mislead":[75],"consumers":[76],"when":[77],"used":[78],"analytics,":[80],"lead":[83],"biased":[85],"decisions":[86],"downstream":[88],"machine":[89],"learning":[90],"tasks.":[91],"We":[92,137,176],"study":[93,138],"``cost":[95],"representation''":[97],"subset":[99,152],"repairs":[100,153],"functional":[102],"dependencies.":[103],"In":[104],"simple":[105],"terms,":[106],"we":[107,121,163],"target":[108],"question":[110],"how":[112],"many":[113],"additional":[114],"have":[116],"be":[118],"deleted":[119],"if":[120],"want":[122],"satisfy":[124],"not":[125],"only":[126],"constraints":[129,133],"but":[130],"also":[131],"representation":[132],"given":[135],"complexity":[140,149],"this":[142],"problem":[143,158],"compare":[145],"it":[146],"with":[147],"optimal":[151],"without":[154],"representations.":[155],"While":[156],"is":[159],"NP-hard":[160],"general,":[162],"give":[164],"polynomial-time":[165],"algorithms":[166,188],"special":[168],"cases,":[169],"efficient":[171],"heuristics":[172],"general":[174],"cases.":[175],"perform":[177],"suite":[179],"experiments":[181],"that":[182],"show":[183],"effectiveness":[185],"our":[187],"computing":[190],"approximating":[192],"cost":[194],"representation.":[196]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404260946","counts_by_year":[],"updated_date":"2024-12-14T06:41:37.306232","created_date":"2024-11-13"}