{"id":"https://openalex.org/W4404342061","doi":"https://doi.org/10.48550/arxiv.2410.16033","title":"TreeBoN: Enhancing Inference-Time Alignment with Speculative Tree-Search\n and Best-of-N Sampling","display_name":"TreeBoN: Enhancing Inference-Time Alignment with Speculative Tree-Search\n and Best-of-N Sampling","publication_year":2024,"publication_date":"2024-10-18","ids":{"openalex":"https://openalex.org/W4404342061","doi":"https://doi.org/10.48550/arxiv.2410.16033"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.16033","pdf_url":"http://arxiv.org/pdf/2410.16033","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.16033","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004501905","display_name":"Jiahao Qiu","orcid":"https://orcid.org/0000-0001-5960-5782"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qiu, Jiahao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102275379","display_name":"Yifu Lu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Yifu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069589795","display_name":"Yifan Zeng","orcid":"https://orcid.org/0009-0000-6143-3043"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zeng, Yifan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101936083","display_name":"Jiacheng Guo","orcid":"https://orcid.org/0000-0003-3238-4275"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Jiacheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019481397","display_name":"Jiayi Geng","orcid":"https://orcid.org/0009-0008-8858-6734"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Geng, Jiayi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062299183","display_name":"Huazheng Wang","orcid":"https://orcid.org/0000-0003-3918-6925"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Huazheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109343769","display_name":"Kaixuan Huang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Kaixuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087759995","display_name":"Yue Wu","orcid":"https://orcid.org/0000-0002-9210-5103"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Yue","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100707460","display_name":"Mengdi Wang","orcid":"https://orcid.org/0000-0002-2101-9507"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Mengdi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9748,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9748,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9731,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9647,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.54635763}],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.728684},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5816141},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.5671127},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.54635763},{"id":"https://openalex.org/C207024777","wikidata":"https://www.wikidata.org/wiki/Q621673","display_name":"Search tree","level":3,"score":0.51315814},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3312091},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3091343},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.26879036},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.26171365},{"id":"https://openalex.org/C125583679","wikidata":"https://www.wikidata.org/wiki/Q755673","display_name":"Search algorithm","level":2,"score":0.20598775},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.09203786},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.16033","pdf_url":"http://arxiv.org/pdf/2410.16033","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.16033","pdf_url":"http://arxiv.org/pdf/2410.16033","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W48124421","https://openalex.org/W2915699561","https://openalex.org/W2739550867","https://openalex.org/W2359807192","https://openalex.org/W2227684440","https://openalex.org/W2174962524","https://openalex.org/W2157743338","https://openalex.org/W2156833871","https://openalex.org/W2083751087","https://openalex.org/W1521720839"],"abstract_inverted_index":{"Inference-time":[0],"alignment":[1,156],"enhances":[2],"the":[3,40,126,147],"performance":[4,45],"of":[5,72,130],"large":[6],"language":[7],"models":[8],"without":[9],"requiring":[10],"additional":[11],"training":[12],"or":[13],"fine-tuning":[14],"but":[15,46],"presents":[16],"challenges":[17],"due":[18],"to":[19,101],"balancing":[20],"computational":[21,50,83,149],"efficiency":[22],"with":[23,47,146],"high-quality":[24],"output.":[25],"Best-of-N":[26,65],"(BoN)":[27,66],"sampling,":[28],"as":[29],"a":[30,48,55,60,70],"simple":[31],"yet":[32],"powerful":[33],"approach,":[34],"generates":[35],"multiple":[36],"responses":[37],"and":[38,77,105,117,134,151,155],"selects":[39],"best":[41],"one,":[42],"achieving":[43],"improved":[44],"high":[49,87],"cost.":[51],"We":[52,109],"propose":[53],"TreeBoN,":[54],"novel":[56],"framework":[57],"that":[58],"integrates":[59],"speculative":[61],"tree-search":[62],"strategy":[63],"into":[64],"Sampling.":[67],"TreeBoN":[68,111,124],"maintains":[69],"set":[71],"parent":[73],"nodes,":[74],"iteratively":[75],"branching":[76],"pruning":[78],"low-quality":[79,107],"responses,":[80],"thereby":[81],"reducing":[82],"overhead":[84],"while":[85],"maintaining":[86],"output":[88],"quality.":[89],"Our":[90],"approach":[91],"also":[92],"leverages":[93],"token-level":[94],"rewards":[95],"from":[96],"Direct":[97],"Preference":[98],"Optimization":[99],"(DPO)":[100],"guide":[102],"tree":[103],"expansion":[104],"prune":[106],"paths.":[108],"evaluate":[110],"using":[112],"AlpacaFarm,":[113],"HH-RLHF,":[114],"UltraFeedback,":[115],"GSM8K,":[116],"TutorEval":[118,133],"datasets,":[119,142],"demonstrating":[120],"consistent":[121],"improvements.":[122],"Specifically,":[123],"achieves":[125],"highest":[127],"win":[128,137],"rate":[129],"65%":[131],"on":[132],"around":[135],"60%":[136],"rates":[138],"across":[139],"other":[140],"different":[141],"outperforming":[143],"standard":[144],"BoN":[145],"same":[148],"cost":[150],"showcasing":[152],"its":[153],"scalability":[154],"efficacy.":[157]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404342061","counts_by_year":[],"updated_date":"2025-04-23T19:12:07.067226","created_date":"2024-11-14"}