{"id":"https://openalex.org/W4404089111","doi":"https://doi.org/10.48550/arxiv.2410.15997","title":"MultiRC: Joint Learning for Time Series Anomaly Prediction and Detection\n with Multi-scale Reconstructive Contrast","display_name":"MultiRC: Joint Learning for Time Series Anomaly Prediction and Detection\n with Multi-scale Reconstructive Contrast","publication_year":2024,"publication_date":"2024-10-21","ids":{"openalex":"https://openalex.org/W4404089111","doi":"https://doi.org/10.48550/arxiv.2410.15997"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.15997","pdf_url":"http://arxiv.org/pdf/2410.15997","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.15997","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031580282","display_name":"Shiyan Hu","orcid":"https://orcid.org/0000-0003-2512-0634"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Shiyan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061456453","display_name":"Kai Zhao","orcid":"https://orcid.org/0000-0003-0656-1901"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Kai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058572131","display_name":"Xiangfei Qiu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qiu, Xiangfei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057100441","display_name":"Yang Shu","orcid":"https://orcid.org/0000-0002-8304-1531"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shu, Yang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020559625","display_name":"Jilin Hu","orcid":"https://orcid.org/0000-0002-7739-7769"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Jilin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101717968","display_name":"Bin Yang","orcid":"https://orcid.org/0000-0002-8322-117X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Bin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5084021933","display_name":"Chenjuan Guo","orcid":"https://orcid.org/0000-0002-4516-4637"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Chenjuan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9848,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9832,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.5114914}],"concepts":[{"id":"https://openalex.org/C2776502983","wikidata":"https://www.wikidata.org/wiki/Q690182","display_name":"Contrast (vision)","level":2,"score":0.7148417},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.60573983},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.59949315},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.58992445},{"id":"https://openalex.org/C18555067","wikidata":"https://www.wikidata.org/wiki/Q8375051","display_name":"Joint (building)","level":2,"score":0.58975095},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.51626825},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.5114914},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50352496},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40096214},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3212676},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.24392742},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.17420933},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.1616207},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.15361983},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.06370893},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.05072084},{"id":"https://openalex.org/C170154142","wikidata":"https://www.wikidata.org/wiki/Q150737","display_name":"Architectural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.15997","pdf_url":"http://arxiv.org/pdf/2410.15997","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.15997","pdf_url":"http://arxiv.org/pdf/2410.15997","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4377864969","https://openalex.org/W4300558037","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3189286258","https://openalex.org/W3120251014","https://openalex.org/W2912112202","https://openalex.org/W2806741695","https://openalex.org/W2667207928"],"abstract_inverted_index":{"Many":[0],"methods":[1],"have":[2],"been":[3],"proposed":[4],"for":[5,53,86],"unsupervised":[6],"time":[7,33],"series":[8],"anomaly":[9,57,88,105],"detection.":[10],"Despite":[11],"some":[12],"progress,":[13],"research":[14],"on":[15],"predicting":[16],"future":[17],"anomalies":[18,24],"is":[19,25],"still":[20],"relatively":[21],"scarce.":[22],"Predicting":[23],"particularly":[26],"challenging":[27],"due":[28],"to":[29,47,69,81],"the":[30,35,72,87],"diverse":[31,73],"reaction":[32,74],"and":[34,50,59,64,91,107],"lack":[36],"of":[37,56],"labeled":[38],"data.":[39],"To":[40],"address":[41],"these":[42],"challenges,":[43],"we":[44],"propose":[45],"MultiRC":[46,76,110],"integrate":[48],"reconstructive":[49],"contrastive":[51],"learning":[52,55],"joint":[54],"prediction":[58,89,106],"detection,":[60],"with":[61,71],"multi-scale":[62],"structure":[63],"adaptive":[65],"dominant":[66],"period":[67],"mask":[68],"deal":[70],"time.":[75],"also":[77],"generates":[78],"negative":[79],"samples":[80],"provide":[82],"essential":[83],"training":[84],"momentum":[85],"tasks":[90],"prevent":[92],"model":[93],"degradation.":[94],"We":[95],"evaluate":[96],"seven":[97],"benchmark":[98],"datasets":[99],"from":[100],"different":[101],"fields.":[102],"For":[103],"both":[104],"detection":[108],"tasks,":[109],"outperforms":[111],"existing":[112],"state-of-the-art":[113],"methods.":[114]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404089111","counts_by_year":[],"updated_date":"2025-04-05T18:46:14.591675","created_date":"2024-11-06"}