{"id":"https://openalex.org/W4404089039","doi":"https://doi.org/10.48550/arxiv.2410.15939","title":"CausalGraph2LLM: Evaluating LLMs for Causal Queries","display_name":"CausalGraph2LLM: Evaluating LLMs for Causal Queries","publication_year":2024,"publication_date":"2024-10-21","ids":{"openalex":"https://openalex.org/W4404089039","doi":"https://doi.org/10.48550/arxiv.2410.15939"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.15939","pdf_url":"http://arxiv.org/pdf/2410.15939","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.15939","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5088355092","display_name":"Ivaxi Sheth","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sheth, Ivaxi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063661444","display_name":"Bahare Fatemi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fatemi, Bahare","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5003887059","display_name":"Mario Fritz","orcid":"https://orcid.org/0000-0001-8949-9896"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fritz, Mario","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10215","display_name":"Semantic Web and Ontologies","score":0.98,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/causality","display_name":"Causality","score":0.427298}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.45820287},{"id":"https://openalex.org/C64357122","wikidata":"https://www.wikidata.org/wiki/Q1149766","display_name":"Causality (physics)","level":2,"score":0.427298},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.35567284},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.3259797},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.06006798},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.15939","pdf_url":"http://arxiv.org/pdf/2410.15939","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.15939","pdf_url":"http://arxiv.org/pdf/2410.15939","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2081494945","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Causality":[0],"is":[1,38],"essential":[2],"in":[3,32,42,46,127],"scientific":[4],"research,":[5],"enabling":[6],"researchers":[7],"to":[8,53,62,88,134,147],"interpret":[9],"true":[10],"relationships":[11,16],"between":[12],"variables.":[13],"These":[14,57],"causal":[15,21,47,55,65,85,91,100,161,180],"are":[17,24,131],"often":[18,170],"represented":[19],"by":[20],"graphs,":[22],"which":[23],"directed":[25],"acyclic":[26],"graphs.":[27,56],"With":[28],"the":[29,60,64,90,99,135],"recent":[30],"advancements":[31],"Large":[33],"Language":[34],"Models":[35],"(LLMs),":[36],"there":[37],"an":[39],"increasing":[40],"interest":[41],"exploring":[43],"their":[44,50,185],"capabilities":[45],"reasoning":[48],"and":[49,106,113,143],"potential":[51],"use":[52],"hypothesize":[54],"tasks":[58],"necessitate":[59],"LLMs":[61,124,168],"encode":[63],"graph":[66,86,92],"effectively":[67],"for":[68,116,159],"subsequent":[69],"downstream":[70,160],"tasks.":[71,163],"In":[72],"this":[73,128,157],"paper,":[74],"we":[75,165],"propose":[76],"a":[77,82,179],"comprehensive":[78],"benchmark,":[79],"\\emph{CausalGraph2LLM},":[80],"encompassing":[81],"variety":[83],"of":[84,95,151],"settings":[87],"assess":[89],"understanding":[93],"capability":[94],"LLMs.":[96],"We":[97,109,154],"categorize":[98],"queries":[101],"into":[102],"two":[103],"types:":[104],"graph-level":[105],"node-level":[107],"queries.":[108],"benchmark":[110],"both":[111],"open-sourced":[112],"closed":[114],"models":[115,140],"our":[117],"study.":[118],"Our":[119],"findings":[120],"reveal":[121],"that":[122,167],"while":[123],"show":[125],"promise":[126],"domain,":[129],"they":[130],"highly":[132],"sensitive":[133],"encoding":[136],"used.":[137],"Even":[138],"capable":[139],"like":[141],"GPT-4":[142],"Gemini-1.5":[144],"exhibit":[145],"sensitivity":[146,158],"encoding,":[148],"with":[149,175],"deviations":[150],"about":[152,178],"$60\\%$.":[153],"further":[155],"demonstrate":[156],"intervention":[162],"Moreover,":[164],"observe":[166],"can":[169],"display":[171],"biases":[172],"when":[173],"presented":[174],"contextual":[176],"information":[177],"graph,":[181],"potentially":[182],"stemming":[183],"from":[184],"parametric":[186],"memory.":[187]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4404089039","counts_by_year":[],"updated_date":"2024-12-07T03:55:11.251405","created_date":"2024-11-06"}