{"id":"https://openalex.org/W4403579697","doi":"https://doi.org/10.48550/arxiv.2410.13421","title":"Performance of Gaussian Mixture Model Classifiers on Embedded Feature\n Spaces","display_name":"Performance of Gaussian Mixture Model Classifiers on Embedded Feature\n Spaces","publication_year":2024,"publication_date":"2024-10-17","ids":{"openalex":"https://openalex.org/W4403579697","doi":"https://doi.org/10.48550/arxiv.2410.13421"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.13421","pdf_url":"http://arxiv.org/pdf/2410.13421","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.13421","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5053191012","display_name":"J\u00e9r\u00e9my Chopin","orcid":"https://orcid.org/0000-0003-0131-0732"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chopin, Jeremy","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5038023618","display_name":"Rozenn Dahyot","orcid":"https://orcid.org/0000-0003-0983-3052"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dahyot, Rozenn","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.7649,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.7649,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10901","display_name":"Advanced Data Compression Techniques","score":0.7612,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.6788,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6673774},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.44341165}],"concepts":[{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6673774},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.61812556},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5788237},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.5650719},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.55640054},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.520135},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.44341165},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32831615},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.08314419},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.13421","pdf_url":"http://arxiv.org/pdf/2410.13421","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.13421","pdf_url":"http://arxiv.org/pdf/2410.13421","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3130349901","https://openalex.org/W2990323019","https://openalex.org/W2107361128","https://openalex.org/W2095350775","https://openalex.org/W2075383893","https://openalex.org/W2014494654","https://openalex.org/W1975321310","https://openalex.org/W1952261593","https://openalex.org/W1579833936","https://openalex.org/W1578916557"],"abstract_inverted_index":{"Data":[0],"embeddings":[1],"with":[2,89],"CLIP":[3,75,158],"and":[4,76,122],"ImageBind":[5,152],"provide":[6],"powerful":[7],"features":[8,143],"for":[9,22,118,135,145,159],"the":[10,36,72,113,131],"analysis":[11],"of":[12,53,71,161],"multimedia":[13],"and/or":[14],"multimodal":[15],"data.":[16],"We":[17,148],"assess":[18],"their":[19],"performance":[20,68,156],"here":[21],"classification":[23,67,160],"using":[24,171],"a":[25,90],"Gaussian":[26],"Mixture":[27],"models":[28],"(GMMs)":[29],"based":[30,41,66,87],"layer":[31],"as":[32,51],"an":[33],"alternative":[34],"to":[35,47,63,130],"standard":[37],"Softmax":[38],"layer.":[39],"GMMs":[40,114],"classifiers":[42],"have":[43,48],"recently":[44],"been":[45],"shown":[46],"interesting":[49],"performances":[50],"part":[52],"deep":[54],"learning":[55],"pipelines":[56],"trained":[57],"end-to-end.":[58],"Our":[59,78,97],"first":[60],"contribution":[61,80],"is":[62,81,115],"investigate":[64],"GMM":[65,86],"taking":[69],"advantage":[70],"embedded":[73,107,138,167],"spaces":[74,139,168],"ImageBind.":[77],"second":[79],"in":[82,101,112],"proposing":[83],"our":[84],"own":[85],"classifier":[88],"lower":[91],"parameters":[92],"count":[93],"than":[94,157],"previously":[95],"proposed.":[96],"findings":[98],"are,":[99],"that":[100,125,140,151],"most":[102],"cases,":[103],"on":[104],"these":[105,137,166],"tested":[106],"spaces,":[108],"one":[109],"gaussian":[110],"component":[111],"often":[116,153],"enough":[117],"capturing":[119],"each":[120,146],"class,":[121],"we":[123],"hypothesize":[124],"this":[126],"may":[127],"be":[128],"due":[129],"contrastive":[132],"loss":[133],"used":[134],"training":[136],"naturally":[141],"concentrates":[142],"together":[144],"class.":[147],"also":[149],"observed":[150],"provides":[154],"better":[155],"image":[162],"datasets":[163],"even":[164],"when":[165],"are":[169],"compressed":[170],"PCA.":[172]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403579697","counts_by_year":[],"updated_date":"2025-04-19T23:04:01.795485","created_date":"2024-10-21"}