{"id":"https://openalex.org/W4403577655","doi":"https://doi.org/10.48550/arxiv.2410.12190","title":"LPUF-AuthNet: A Lightweight PUF-Based IoT Authentication via Tandem\n Neural Networks and Split Learning","display_name":"LPUF-AuthNet: A Lightweight PUF-Based IoT Authentication via Tandem\n Neural Networks and Split Learning","publication_year":2024,"publication_date":"2024-10-15","ids":{"openalex":"https://openalex.org/W4403577655","doi":"https://doi.org/10.48550/arxiv.2410.12190"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.12190","pdf_url":"http://arxiv.org/pdf/2410.12190","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.12190","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069635736","display_name":"Brahim Mefgouda","orcid":"https://orcid.org/0000-0002-3127-734X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mefgouda, Brahim","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067028033","display_name":"Raviha Khan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Khan, Raviha","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088743570","display_name":"Omar Alhussein","orcid":"https://orcid.org/0000-0002-1531-5916"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Alhussein, Omar","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078108496","display_name":"Hani Saleh","orcid":"https://orcid.org/0000-0002-7185-0278"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Saleh, Hani","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036512526","display_name":"Hossien B. Eldeeb","orcid":"https://orcid.org/0000-0001-7560-1124"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Eldeeb, Hossien B.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079474630","display_name":"Anshul Pandey","orcid":"https://orcid.org/0000-0001-7911-3451"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pandey, Anshul","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5004034156","display_name":"Sami Muhaidat","orcid":"https://orcid.org/0000-0003-4649-9399"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Muhaidat, Sami","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":0.9904,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":0.9904,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11241","display_name":"Advanced Malware Detection Techniques","score":0.9571,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12122","display_name":"Physical Unclonable Functions (PUFs) and Hardware Security","score":0.9293,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/tandem","display_name":"Tandem","score":0.5959751}],"concepts":[{"id":"https://openalex.org/C81860439","wikidata":"https://www.wikidata.org/wiki/Q251212","display_name":"Internet of Things","level":2,"score":0.7443109},{"id":"https://openalex.org/C148417208","wikidata":"https://www.wikidata.org/wiki/Q4825882","display_name":"Authentication (law)","level":2,"score":0.63514775},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62502825},{"id":"https://openalex.org/C2777814067","wikidata":"https://www.wikidata.org/wiki/Q1752317","display_name":"Tandem","level":2,"score":0.5959751},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5667247},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.4165586},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39820966},{"id":"https://openalex.org/C118524514","wikidata":"https://www.wikidata.org/wiki/Q173212","display_name":"Computer architecture","level":1,"score":0.33501786},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.28005207},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.13465813},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.05317539}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.12190","pdf_url":"http://arxiv.org/pdf/2410.12190","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.12190","pdf_url":"http://arxiv.org/pdf/2410.12190","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4380869615","https://openalex.org/W4323262585","https://openalex.org/W4245926026","https://openalex.org/W4211086969","https://openalex.org/W2890607860","https://openalex.org/W2798825245","https://openalex.org/W2519652201","https://openalex.org/W2154144052","https://openalex.org/W2025127327","https://openalex.org/W2023186083"],"abstract_inverted_index":{"By":[0],"2025,":[1],"the":[2,38,47,134],"internet":[3],"of":[4,49,131],"things":[5],"(IoT)":[6],"is":[7],"projected":[8],"to":[9,75,85],"connect":[10],"over":[11],"75":[12],"billion":[13],"devices":[14,77],"globally,":[15],"fundamentally":[16],"altering":[17],"how":[18],"we":[19],"interact":[20],"with":[21,46,110],"our":[22],"environments":[23],"in":[24,37],"both":[25],"urban":[26],"and":[27,57,90,124],"rural":[28],"settings.":[29],"However,":[30,79],"IoT":[31,50],"device":[32],"security":[33,68,126],"remains":[34],"challenging,":[35],"particularly":[36],"authentication":[39],"process.":[40],"Traditional":[41],"cryptographic":[42],"methods":[43],"often":[44],"struggle":[45],"constraints":[48],"devices,":[51],"such":[52],"as":[53,66],"limited":[54],"computational":[55],"power":[56],"storage.":[58],"This":[59],"paper":[60],"considers":[61],"physical":[62,73],"unclonable":[63],"functions":[64],"(PUFs)":[65],"robust":[67],"solutions,":[69],"utilizing":[70],"their":[71],"inherent":[72],"uniqueness":[74],"authenticate":[76],"securely.":[78],"traditional":[80],"PUF":[81,101],"systems":[82],"are":[83],"vulnerable":[84],"machine":[86],"learning":[87,113],"(ML)":[88],"attacks":[89],"burdened":[91],"by":[92,127],"large":[93],"datasets.":[94],"Our":[95],"proposed":[96,117],"solution":[97],"introduces":[98],"a":[99,111],"lightweight":[100],"mechanism,":[102],"called":[103],"LPUF-AuthNet,":[104],"combining":[105],"tandem":[106],"neural":[107],"networks":[108],"(TNN)":[109],"split":[112],"(SL)":[114],"paradigm.":[115],"The":[116],"approach":[118],"provides":[119],"scalability,":[120],"supports":[121],"mutual":[122],"authentication,":[123],"enhances":[125],"resisting":[128],"various":[129],"types":[130],"attacks,":[132],"paving":[133],"way":[135],"for":[136],"secure":[137],"integration":[138],"into":[139],"future":[140],"6G":[141],"technologies.":[142]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403577655","counts_by_year":[],"updated_date":"2025-01-17T21:37:49.160889","created_date":"2024-10-20"}