{"id":"https://openalex.org/W4403444125","doi":"https://doi.org/10.48550/arxiv.2410.08390","title":"KnowGraph: Knowledge-Enabled Anomaly Detection via Logical Reasoning on\n Graph Data","display_name":"KnowGraph: Knowledge-Enabled Anomaly Detection via Logical Reasoning on\n Graph Data","publication_year":2024,"publication_date":"2024-10-10","ids":{"openalex":"https://openalex.org/W4403444125","doi":"https://doi.org/10.48550/arxiv.2410.08390"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.08390","pdf_url":"http://arxiv.org/pdf/2410.08390","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.08390","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5114285355","display_name":"Andy Zhou","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Andy","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007385062","display_name":"Xiaojun Xu","orcid":"https://orcid.org/0000-0003-4306-7590"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Xiaojun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049655555","display_name":"Ramesh Raghunathan","orcid":"https://orcid.org/0000-0003-2193-6257"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Raghunathan, Ramesh","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010398748","display_name":"Alok Lal","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lal, Alok","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075845093","display_name":"Xiaohong Guan","orcid":"https://orcid.org/0000-0002-8826-0362"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guan, Xinze","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100646131","display_name":"Bin Yu","orcid":"https://orcid.org/0000-0002-2453-7852"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Bin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100374364","display_name":"Bo Li","orcid":"https://orcid.org/0000-0001-7500-8355"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Bo","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9912,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10215","display_name":"Semantic Web and Ontologies","score":0.9873,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/knowledge-graph","display_name":"Knowledge graph","score":0.52396154}],"concepts":[{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.63881856},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.59625727},{"id":"https://openalex.org/C2987255567","wikidata":"https://www.wikidata.org/wiki/Q33002955","display_name":"Knowledge graph","level":2,"score":0.52396154},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.51959556},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.29007155},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.25811887},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2513579}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.08390","pdf_url":"http://arxiv.org/pdf/2410.08390","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.08390","pdf_url":"http://arxiv.org/pdf/2410.08390","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4402327032","https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Graph-based":[0],"anomaly":[1,77],"detection":[2,12,18,51,97,181],"is":[3,41],"pivotal":[4],"in":[5,13,149,158,179],"diverse":[6],"security":[7,203],"applications,":[8],"such":[9,56,61],"as":[10,62],"fraud":[11],"transaction":[14],"networks":[15],"and":[16,44,152],"intrusion":[17],"for":[19,74,94,200],"network":[20],"traffic.":[21],"Standard":[22],"approaches,":[23],"including":[24],"Graph":[25],"Neural":[26],"Networks":[27],"(GNNs),":[28],"often":[29],"struggle":[30],"to":[31,119,163],"generalize":[32],"across":[33],"shifting":[34],"data":[35],"distributions.":[36],"Meanwhile,":[37],"real-world":[38,50,140],"domain":[39,69,128,195],"knowledge":[40,57,70,103,129,196],"more":[42],"stable":[43],"a":[45,85,91,111],"common":[46],"existing":[47],"component":[48,88,113,178],"of":[49,174,193],"strategies.":[52],"To":[53],"explicitly":[54],"integrate":[55],"into":[58,197],"data-driven":[59,72,198],"models":[60,104,118,199],"GCNs,":[63],"we":[64],"propose":[65],"KnowGraph,":[66],"which":[67],"integrates":[68],"with":[71],"learning":[73,87],"enhanced":[75],"graph-based":[76,202],"detection.":[78],"KnowGraph":[79,144],"comprises":[80],"two":[81],"principal":[82],"components:":[83],"(1)":[84],"statistical":[86],"that":[89,105,114,143],"utilizes":[90],"main":[92],"model":[93,125],"the":[95,172,175,191],"overarching":[96],"task,":[98],"augmented":[99],"by":[100],"multiple":[101],"specialized":[102],"predict":[106],"domain-specific":[107],"semantic":[108],"entities;":[109],"(2)":[110],"reasoning":[112,177],"employs":[115],"probabilistic":[116],"graphical":[117],"execute":[120],"logical":[121],"inferences":[122],"based":[123],"on":[124,137],"outputs,":[126],"encoding":[127],"through":[130],"weighted":[131],"first-order":[132],"logic":[133],"formulas.":[134],"Extensive":[135],"experiments":[136],"these":[138],"large-scale":[139],"datasets":[141],"show":[142],"consistently":[145],"outperforms":[146],"state-of-the-art":[147],"baselines":[148],"both":[150],"transductive":[151],"inductive":[153],"settings,":[154],"achieving":[155],"substantial":[156],"gains":[157],"average":[159],"precision":[160],"when":[161],"generalizing":[162],"completely":[164],"unseen":[165],"test":[166],"graphs.":[167],"Further":[168],"ablation":[169],"studies":[170],"demonstrate":[171],"effectiveness":[173],"proposed":[176],"improving":[180],"performance,":[182],"especially":[183],"under":[184],"extreme":[185],"class":[186],"imbalance.":[187],"These":[188],"results":[189],"highlight":[190],"potential":[192],"integrating":[194],"high-stakes,":[201],"applications.":[204]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403444125","counts_by_year":[],"updated_date":"2025-04-19T09:57:43.795305","created_date":"2024-10-16"}