{"id":"https://openalex.org/W4403345146","doi":"https://doi.org/10.48550/arxiv.2410.06422","title":"Predicting Battery Capacity Fade Using Probabilistic Machine Learning\n Models With and Without Pre-Trained Priors","display_name":"Predicting Battery Capacity Fade Using Probabilistic Machine Learning\n Models With and Without Pre-Trained Priors","publication_year":2024,"publication_date":"2024-10-08","ids":{"openalex":"https://openalex.org/W4403345146","doi":"https://doi.org/10.48550/arxiv.2410.06422"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.06422","pdf_url":"http://arxiv.org/pdf/2410.06422","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.06422","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5073393938","display_name":"Michael Kenney","orcid":"https://orcid.org/0000-0001-9803-8522"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kenney, Michael J.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109819043","display_name":"Katerina G. Malollari","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Malollari, Katerina G.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048552375","display_name":"Sergei V. Kalinin","orcid":"https://orcid.org/0000-0001-5354-6152"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kalinin, Sergei V.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5013879711","display_name":"Maxim Ziatdinov","orcid":"https://orcid.org/0000-0003-2570-4592"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ziatdinov, Maxim","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10663","display_name":"Advanced Battery Technologies Research","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10663","display_name":"Advanced Battery Technologies Research","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10768","display_name":"Electric Vehicles and Infrastructure","score":0.9575,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/fade","display_name":"Fade","score":0.7152393},{"id":"https://openalex.org/keywords/battery-capacity","display_name":"Battery capacity","score":0.5541281}],"concepts":[{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.7431773},{"id":"https://openalex.org/C2778518048","wikidata":"https://www.wikidata.org/wiki/Q848346","display_name":"Fade","level":2,"score":0.7152393},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.70419747},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.57446796},{"id":"https://openalex.org/C2989104859","wikidata":"https://www.wikidata.org/wiki/Q267298","display_name":"Battery capacity","level":4,"score":0.5541281},{"id":"https://openalex.org/C555008776","wikidata":"https://www.wikidata.org/wiki/Q267298","display_name":"Battery (electricity)","level":3,"score":0.5102148},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5039565},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45142287},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.28750715},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.06422","pdf_url":"http://arxiv.org/pdf/2410.06422","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.06422","pdf_url":"http://arxiv.org/pdf/2410.06422","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4399798250","https://openalex.org/W4308964873","https://openalex.org/W2768611900","https://openalex.org/W2757942247","https://openalex.org/W2729780499","https://openalex.org/W2543699259","https://openalex.org/W2499270629","https://openalex.org/W2384016584","https://openalex.org/W2188052638","https://openalex.org/W184328560"],"abstract_inverted_index":{"Lithium-ion":[0],"batteries":[1,34],"are":[2,154,164],"a":[3,22,43,128,133,139,157,195,200,255,258],"key":[4],"energy":[5,17],"storage":[6],"technology":[7],"driving":[8],"revolutions":[9],"in":[10,75,99,108,161,183,190,194,232],"mobile":[11],"electronics,":[12],"electric":[13],"vehicles":[14],"and":[15,118,125,138,150,197,219,230,241,271],"renewable":[16],"storage.":[18],"Capacity":[19],"retention":[20],"is":[21,27,70,206,269],"vital":[23],"performance":[24],"measure":[25],"that":[26,211,231],"frequently":[28],"utilized":[29],"to":[30,62,171,222,246,275],"assess":[31],"whether":[32],"these":[33],"have":[35],"approached":[36],"their":[37,123,152],"end-of-life.":[38],"Machine":[39],"learning":[40,98,191,264],"(ML)":[41],"offers":[42,254],"powerful":[44],"tool":[45],"for":[46,179,217,257,278],"predicting":[47],"capacity":[48],"degradation":[49],"based":[50,83],"on":[51,84,167],"past":[52,267],"data,":[53],"and,":[54],"potentially,":[55],"prior":[56,225],"physical":[57],"knowledge,":[58],"but":[59],"the":[60,92,104,120,173,186,224,228,233,236,247],"degree":[61],"which":[63],"an":[64,168,188],"ML":[65,116,282],"prediction":[66],"can":[67,213,249,272],"be":[68,81,215,250,273],"trusted":[69],"of":[71,87,94,106,122,148,227,235,261,280],"significant":[72],"practical":[73],"importance":[74],"situations":[76],"where":[77,266],"consequential":[78],"decisions":[79],"must":[80],"made":[82],"battery":[85,101],"state":[86],"health.":[88],"This":[89,181,252],"study":[90],"explores":[91],"efficacy":[93],"fully":[95,140],"Bayesian":[96,141],"machine":[97,263],"forecasting":[100],"health":[102],"with":[103],"quantification":[105],"uncertainty":[107,126,243],"its":[109],"predictions.":[110],"Specifically,":[111],"we":[112,209],"implemented":[113],"three":[114],"probabilistic":[115,262,281],"approaches":[117,221],"evaluated":[119],"accuracy":[121,240],"predictions":[124],"estimates:":[127],"standard":[129],"Gaussian":[130,135],"process":[131,136],"(GP),":[132],"structured":[134],"(sGP),":[137],"neural":[142],"network":[143],"(BNN).":[144],"In":[145],"typical":[146],"applications":[147],"GP":[149,218],"sGP,":[151,238],"hyperparameters":[153,229],"learned":[155],"from":[156],"single":[158],"sample":[159],"while,":[160],"contrast,":[162],"BNNs":[163,199],"typically":[165],"pre-trained":[166,237],"existing":[169],"dataset":[170,196],"learn":[172,223,276],"weight":[174],"distributions":[175,226],"before":[176],"being":[177],"used":[178,274],"inference.":[180],"difference":[182],"methodology":[184],"gives":[185],"BNN":[187,248],"advantage":[189],"global":[192],"trends":[193],"makes":[198],"good":[201],"choice":[202],"when":[203],"training":[204],"data":[205,268],"available.":[207],"However,":[208],"show":[210],"pre-training":[212],"also":[214],"leveraged":[216],"sGP":[220],"case":[234],"similar":[239],"improved":[242],"estimation":[244],"compared":[245],"achieved.":[251],"approach":[253],"framework":[256],"broad":[259],"range":[260],"scenarios":[265],"available":[270],"priors":[277],"(hyper)parameters":[279],"models.":[283]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403345146","counts_by_year":[],"updated_date":"2024-12-15T07:35:07.444896","created_date":"2024-10-12"}