{"id":"https://openalex.org/W4403344831","doi":"https://doi.org/10.48550/arxiv.2410.06333","title":"Batched Bayesian optimization with correlated candidate uncertainties","display_name":"Batched Bayesian optimization with correlated candidate uncertainties","publication_year":2024,"publication_date":"2024-10-08","ids":{"openalex":"https://openalex.org/W4403344831","doi":"https://doi.org/10.48550/arxiv.2410.06333"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.06333","pdf_url":"http://arxiv.org/pdf/2410.06333","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.06333","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083943682","display_name":"Jenna C. Fromer","orcid":"https://orcid.org/0000-0003-2328-7457"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fromer, Jenna","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069477050","display_name":"Runzhong Wang","orcid":"https://orcid.org/0000-0002-9566-738X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Runzhong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5104430203","display_name":"Mrunali Manjrekar","orcid":"https://orcid.org/0009-0001-3575-4756"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Manjrekar, Mrunali","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025714860","display_name":"Austin Tripp","orcid":"https://orcid.org/0000-0002-0138-7740"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tripp, Austin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102890597","display_name":"Jos\u00e9 Miguel Hern\u00e1ndez-Lobato","orcid":"https://orcid.org/0000-0001-7610-949X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hern\u00e1ndez-Lobato, Jos\u00e9 Miguel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5076162644","display_name":"Connor W. Coley","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Coley, Connor W.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10848","display_name":"Advanced Multi-Objective Optimization Algorithms","score":0.5846,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10848","display_name":"Advanced Multi-Objective Optimization Algorithms","score":0.5846,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11801","display_name":"Reservoir Engineering and Simulation Methods","score":0.5387,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/bayesian-optimization","display_name":"Bayesian Optimization","score":0.75686526}],"concepts":[{"id":"https://openalex.org/C2778049539","wikidata":"https://www.wikidata.org/wiki/Q17002908","display_name":"Bayesian optimization","level":2,"score":0.75686526},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.6465358},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4676817},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.32644022}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.06333","pdf_url":"http://arxiv.org/pdf/2410.06333","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.06333","pdf_url":"http://arxiv.org/pdf/2410.06333","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4401858220","https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391375266","https://openalex.org/W3106461837","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Batched":[0],"Bayesian":[1,149],"optimization":[2,58],"(BO)":[3],"can":[4],"accelerate":[5],"molecular":[6],"design":[7,23],"by":[8,62],"efficiently":[9],"identifying":[10],"top-performing":[11],"compounds":[12],"from":[13,108],"a":[14,99],"large":[15,129],"chemical":[16,130],"library.":[17],"Existing":[18],"acquisition":[19,38,54,89,101],"strategies":[20],"for":[21,56],"batch":[22,37,76,100],"in":[24,147],"BO":[25],"aim":[26],"to":[27,124],"balance":[28],"exploration":[29,127],"and":[30,91,112,132],"exploitation.":[31],"This":[32],"often":[33],"involves":[34],"optimizing":[35,98],"non-additive":[36],"functions,":[39],"necessitating":[40],"approximation":[41],"via":[42],"myopic":[43],"construction":[44],"and/or":[45],"diversity":[46],"heuristics.":[47],"In":[48],"this":[49],"work,":[50],"we":[51,120],"propose":[52],"an":[53],"strategy":[55,107],"discrete":[57],"that":[59,74,136],"is":[60,82],"motivated":[61],"pure":[63],"exploitation,":[64],"qPO":[65,70],"(multipoint":[66],"Probability":[67],"of":[68,97,128],"Optimality).":[69],"maximizes":[71],"the":[72,75,78,85,94,105,125],"probability":[73],"includes":[77],"true":[79],"optimum,":[80],"which":[81],"expressible":[83],"as":[84],"sum":[86],"over":[87],"individual":[88],"scores":[90],"thereby":[92],"circumvents":[93],"combinatorial":[95],"challenge":[96],"function.":[102],"We":[103],"differentiate":[104],"proposed":[106],"parallel":[109],"Thompson":[110],"sampling":[111],"discuss":[113],"how":[114],"it":[115,137],"implicitly":[116],"captures":[117],"diversity.":[118],"Finally,":[119],"apply":[121],"our":[122],"method":[123],"model-guided":[126],"libraries":[131],"provide":[133],"empirical":[134],"evidence":[135],"performs":[138],"better":[139],"than":[140],"or":[141],"on":[142],"par":[143],"with":[144],"state-of-the-art":[145],"methods":[146],"batched":[148],"optimization.":[150]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403344831","counts_by_year":[],"updated_date":"2025-04-24T03:39:11.201650","created_date":"2024-10-12"}