{"id":"https://openalex.org/W4403346075","doi":"https://doi.org/10.48550/arxiv.2410.05278","title":"Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction\n Based on Chemical Structure","display_name":"Dumpling GNN: Hybrid GNN Enables Better ADC Payload Activity Prediction\n Based on Chemical Structure","publication_year":2024,"publication_date":"2024-09-23","ids":{"openalex":"https://openalex.org/W4403346075","doi":"https://doi.org/10.48550/arxiv.2410.05278"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.05278","pdf_url":"http://arxiv.org/pdf/2410.05278","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.05278","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5109819298","display_name":"Shengjie Xu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Shengjie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5006960979","display_name":"Linhai Xie","orcid":"https://orcid.org/0000-0001-8593-2277"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xie, Lingxi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9752,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10472","display_name":"Semiconductor materials and devices","score":0.975,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/payload","display_name":"Payload (computing)","score":0.9161902}],"concepts":[{"id":"https://openalex.org/C134066672","wikidata":"https://www.wikidata.org/wiki/Q1424639","display_name":"Payload (computing)","level":3,"score":0.9161902},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4342174},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.13605693},{"id":"https://openalex.org/C158379750","wikidata":"https://www.wikidata.org/wiki/Q214111","display_name":"Network packet","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.05278","pdf_url":"http://arxiv.org/pdf/2410.05278","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.05278","pdf_url":"http://arxiv.org/pdf/2410.05278","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W857189463","https://openalex.org/W4391375266","https://openalex.org/W4306309337","https://openalex.org/W4288094128","https://openalex.org/W306312984","https://openalex.org/W2979675132","https://openalex.org/W2790520092","https://openalex.org/W2748952813","https://openalex.org/W2312786236","https://openalex.org/W1535080110"],"abstract_inverted_index":{"Antibody-drug":[0],"conjugates":[1],"(ADCs)":[2],"have":[3],"emerged":[4],"as":[5,90,92],"a":[6,28,79,171],"promising":[7],"class":[8],"of":[9,18,139,147,187],"targeted":[10,191],"cancer":[11,192],"therapeutics,":[12],"but":[13],"the":[14,136,140,144,183],"design":[15,184],"and":[16,57,66,71,113,130,143,185],"optimization":[17,186],"their":[19],"cytotoxic":[20],"payloads":[21,189],"remain":[22],"challenging.":[23],"This":[24],"study":[25],"introduces":[26],"DumplingGNN,":[27],"novel":[29],"hybrid":[30,141],"Graph":[31,53],"Neural":[32,50],"Network":[33],"architecture":[34,142],"specifically":[35],"designed":[36],"for":[37,181],"predicting":[38],"ADC":[39,81,120,188],"payload":[40,82,121],"activity":[41],"based":[42],"on":[43,78,85,93],"chemical":[44],"structure.":[45],"By":[46],"integrating":[47],"Message":[48],"Passing":[49],"Networks":[51,55],"(MPNN),":[52],"Attention":[54],"(GAT),":[56],"GraphSAGE":[58],"layers,":[59],"DumplingGNN":[60,77,99,169],"effectively":[61],"captures":[62],"multi-scale":[63],"molecular":[64,175],"features":[65],"leverages":[67],"both":[68],"2D":[69],"topological":[70],"3D":[72,148],"structural":[73,149],"information.":[74],"We":[75],"evaluate":[76],"comprehensive":[80],"dataset":[83],"focusing":[84],"DNA":[86],"Topoisomerase":[87],"I":[88],"inhibitors,":[89],"well":[91],"multiple":[94],"public":[95],"benchmarks":[96],"from":[97],"MoleculeNet.":[98],"achieves":[100],"state-of-the-art":[101],"performance":[102],"across":[103],"several":[104],"datasets,":[105],"including":[106],"BBBP":[107],"(96.4\\%":[108],"ROC-AUC),":[109,112],"ToxCast":[110],"(78.2\\%":[111],"PCBA":[114],"(88.87\\%":[115],"ROC-AUC).":[116],"On":[117],"our":[118],"specialized":[119],"dataset,":[122],"it":[123],"demonstrates":[124],"exceptional":[125],"accuracy":[126],"(91.48\\%),":[127],"sensitivity":[128],"(95.08\\%),":[129],"specificity":[131],"(97.54\\%).":[132],"Ablation":[133],"studies":[134],"confirm":[135],"synergistic":[137],"effects":[138],"critical":[145],"role":[146],"information":[150],"in":[151,174,190],"enhancing":[152],"predictive":[153],"accuracy.":[154],"The":[155],"model's":[156],"strong":[157],"interpretability,":[158],"enabled":[159],"by":[160],"attention":[161],"mechanisms,":[162],"provides":[163],"valuable":[164],"insights":[165],"into":[166],"structure-activity":[167],"relationships.":[168],"represents":[170],"significant":[172],"advancement":[173],"property":[176],"prediction,":[177],"with":[178],"particular":[179],"promise":[180],"accelerating":[182],"therapy":[193],"development.":[194]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403346075","counts_by_year":[],"updated_date":"2025-04-23T17:16:52.324406","created_date":"2024-10-12"}