{"id":"https://openalex.org/W4403964290","doi":"https://doi.org/10.48550/arxiv.2410.04941","title":"Detecting and Approximating Redundant Computational Blocks in Neural\n Networks","display_name":"Detecting and Approximating Redundant Computational Blocks in Neural\n Networks","publication_year":2024,"publication_date":"2024-10-07","ids":{"openalex":"https://openalex.org/W4403964290","doi":"https://doi.org/10.48550/arxiv.2410.04941"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.04941","pdf_url":"http://arxiv.org/pdf/2410.04941","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.04941","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5010425995","display_name":"Irene Cannistraci","orcid":"https://orcid.org/0000-0003-1655-3059"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cannistraci, Irene","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087051832","display_name":"Emanuele Rodol\u00e0","orcid":"https://orcid.org/0000-0003-0091-7241"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rodol\u00e0, Emanuele","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5003031729","display_name":"Bastian Rieck","orcid":"https://orcid.org/0000-0003-4335-0302"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rieck, Bastian","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.8958,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.8958,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.48902068}],"concepts":[{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5973349},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.58927417},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.48902068},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4209538},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.36357033},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32783115}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.04941","pdf_url":"http://arxiv.org/pdf/2410.04941","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.04941","pdf_url":"http://arxiv.org/pdf/2410.04941","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2989452537","https://openalex.org/W2187401768","https://openalex.org/W2181743346","https://openalex.org/W2181413294","https://openalex.org/W2073681303","https://openalex.org/W2053286651","https://openalex.org/W2052122378","https://openalex.org/W2051487156","https://openalex.org/W2042327336","https://openalex.org/W2033914206"],"abstract_inverted_index":{"Deep":[0],"neural":[1,55],"networks":[2],"often":[3],"learn":[4],"similar":[5],"internal":[6,48],"representations,":[7],"both":[8],"across":[9,50],"different":[10,51],"models":[11,166],"and":[12,27,100,126,142,167],"within":[13],"their":[14],"own":[15],"layers.":[16],"While":[17],"inter-network":[18],"similarities":[19,30,49],"have":[20],"enabled":[21],"techniques":[22],"such":[23],"as":[24],"model":[25,140],"stitching":[26],"merging,":[28],"intra-network":[29],"present":[31],"new":[32],"opportunities":[33],"for":[34,81],"designing":[35],"more":[36,104],"efficient":[37],"architectures.":[38],"In":[39],"this":[40],"paper,":[41],"we":[42,89],"investigate":[43],"the":[44,64,114,132,136,157],"emergence":[45],"of":[46,63,163],"these":[47],"layers":[52],"in":[53,124,156],"diverse":[54],"architectures,":[56],"showing":[57],"that":[58,98,113],"similarity":[59],"patterns":[60],"emerge":[61],"independently":[62],"datataset":[65],"used.":[66],"We":[67,111,149],"introduce":[68],"a":[69,79,95,161],"simple":[70],"metric,":[71],"Block":[72],"Redundancy,":[73],"to":[74,130],"detect":[75],"redundant":[76,105,133],"blocks,":[77],"providing":[78],"foundation":[80],"future":[82],"architectural":[83],"optimization":[84],"methods.":[85],"Building":[86],"on":[87,153],"this,":[88],"propose":[90],"Redundant":[91],"Blocks":[92],"Approximation":[93],"(RBA),":[94],"general":[96],"framework":[97],"identifies":[99],"approximates":[101],"one":[102],"or":[103],"computational":[106],"blocks":[107,134],"using":[108,160],"simpler":[109],"transformations.":[110],"show":[112],"transformation":[115],"$\\mathcal{T}$":[116],"between":[117],"two":[118],"representations":[119],"can":[120],"be":[121],"efficiently":[122],"computed":[123],"closed-form,":[125],"it":[127],"is":[128],"enough":[129],"replace":[131],"from":[135],"network.":[137],"RBA":[138],"reduces":[139],"parameters":[141],"time":[143],"complexity":[144],"while":[145],"maintaining":[146],"good":[147],"performance.":[148],"validate":[150],"our":[151],"method":[152],"classification":[154],"tasks":[155],"vision":[158],"domain":[159],"variety":[162],"pretrained":[164],"foundational":[165],"datasets.":[168]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403964290","counts_by_year":[],"updated_date":"2025-01-19T18:13:03.521650","created_date":"2024-11-01"}