{"id":"https://openalex.org/W4403362807","doi":"https://doi.org/10.48550/arxiv.2410.01110","title":"RobustEMD: Domain Robust Matching for Cross-domain Few-shot Medical\n Image Segmentation","display_name":"RobustEMD: Domain Robust Matching for Cross-domain Few-shot Medical\n Image Segmentation","publication_year":2024,"publication_date":"2024-10-01","ids":{"openalex":"https://openalex.org/W4403362807","doi":"https://doi.org/10.48550/arxiv.2410.01110"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.01110","pdf_url":"http://arxiv.org/pdf/2410.01110","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2410.01110","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101536236","display_name":"Yazhou Zhu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhu, Yazhou","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002546182","display_name":"Minxian Li","orcid":"https://orcid.org/0000-0002-9716-2369"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Minxian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039671101","display_name":"Qiaolin Ye","orcid":"https://orcid.org/0000-0002-8793-8610"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ye, Qiaolin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5107006519","display_name":"Shidong Wang","orcid":"https://orcid.org/0000-0003-3359-6130"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Shidong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114417858","display_name":"Tong Xin","orcid":"https://orcid.org/0000-0001-5479-262X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xin, Tong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5064008061","display_name":"Haofeng Zhang","orcid":"https://orcid.org/0000-0002-4039-7618"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Haofeng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9847,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9847,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9706,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9689,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/image-matching","display_name":"Image Matching","score":0.4120241}],"concepts":[{"id":"https://openalex.org/C2778344882","wikidata":"https://www.wikidata.org/wiki/Q278938","display_name":"Shot (pellet)","level":2,"score":0.69579124},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.6922622},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.67228085},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6195113},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5907155},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5548476},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5425636},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.5341581},{"id":"https://openalex.org/C2986492983","wikidata":"https://www.wikidata.org/wiki/Q861092","display_name":"Image matching","level":3,"score":0.4120241},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3646744},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23032242},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.092303604},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.06020975},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C191897082","wikidata":"https://www.wikidata.org/wiki/Q11467","display_name":"Metallurgy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.01110","pdf_url":"http://arxiv.org/pdf/2410.01110","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2410.01110","pdf_url":"http://arxiv.org/pdf/2410.01110","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2617958085","https://openalex.org/W2384918310","https://openalex.org/W2383808867","https://openalex.org/W2372581239","https://openalex.org/W2107893065","https://openalex.org/W2050706403","https://openalex.org/W1974208548","https://openalex.org/W1973922169","https://openalex.org/W1519745258","https://openalex.org/W1509862229"],"abstract_inverted_index":{"Few-shot":[0],"medical":[1,15,47,76,202],"image":[2,16,137],"segmentation":[3,92],"(FSMIS)":[4],"aims":[5],"to":[6,64,69,132,150,166,177],"perform":[7,133],"the":[8,14,20,34,43,66,73,85,89,108,114,119,123,134,141,146,152,157,168,171,183,210,217,221],"limited":[9],"annotated":[10],"data":[11,36,49,54],"learning":[12],"in":[13,145],"analysis":[17],"scope.":[18],"Despite":[19],"progress":[21],"has":[22],"been":[23],"achieved,":[24],"current":[25],"FSMIS":[26,67],"models":[27,68,93],"are":[28],"all":[29],"trained":[30],"and":[31,60,94,197,204,209],"deployed":[32],"on":[33,84,191],"same":[35],"domain,":[37],"as":[38],"is":[39,50,143,164],"not":[40],"consistent":[41],"with":[42],"clinical":[44],"reality":[45],"that":[46,213],"imaging":[48,57,77],"always":[51],"across":[52,72],"different":[53,74],"domains":[55],"(e.g.":[56],"modalities,":[58],"institutions":[59],"equipment":[61],"sequences).":[62],"How":[63],"enhance":[65],"generalize":[70],"well":[71],"specific":[75],"domains?":[78],"In":[79],"this":[80],"paper,":[81],"we":[82,112,188],"focus":[83],"matching":[86,105,148],"mechanism":[87,106],"of":[88,185],"few-shot":[90],"semantic":[91],"introduce":[95],"an":[96],"Earth":[97],"Mover's":[98],"Distance":[99],"(EMD)":[100],"calculation":[101,139],"based":[102,136],"domain":[103,153],"robust":[104],"for":[107,170],"cross-domain":[109],"scenario.":[110],"Specifically,":[111],"formulate":[113],"EMD":[115,147],"transportation":[116,172],"process":[117],"between":[118],"foreground":[120],"support-query":[121],"features,":[122],"texture":[124],"structure":[125],"aware":[126],"weights":[127],"generation":[128],"method,":[129],"which":[130,199],"proposes":[131],"sobel":[135],"gradient":[138],"over":[140],"nodes,":[142],"introduced":[144,165],"flow":[149],"restrain":[151],"relevant":[154],"nodes.":[155,180],"Besides,":[156],"point":[158],"set":[159,175,179],"level":[160],"distance":[161],"measurement":[162],"metric":[163],"calculated":[167],"cost":[169],"from":[173],"support":[174],"nodes":[176],"query":[178],"To":[181],"evaluate":[182],"performance":[184,219],"our":[186,214],"model,":[187],"conduct":[189],"experiments":[190],"three":[192,206],"scenarios":[193],"(i.e.,":[194],"cross-modal,":[195],"cross-sequence":[196],"cross-institution),":[198],"includes":[200],"eight":[201],"datasets":[203],"involves":[205],"body":[207],"regions,":[208],"results":[211],"demonstrate":[212],"model":[215],"achieves":[216],"SoTA":[218],"against":[220],"compared":[222],"models.":[223]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403362807","counts_by_year":[],"updated_date":"2025-04-22T19:16:33.049967","created_date":"2024-10-13"}