{"id":"https://openalex.org/W4403811842","doi":"https://doi.org/10.48550/arxiv.2409.19413","title":"Membership Privacy Evaluation in Deep Spiking Neural Networks","display_name":"Membership Privacy Evaluation in Deep Spiking Neural Networks","publication_year":2024,"publication_date":"2024-09-28","ids":{"openalex":"https://openalex.org/W4403811842","doi":"https://doi.org/10.48550/arxiv.2409.19413"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.19413","pdf_url":"http://arxiv.org/pdf/2409.19413","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2409.19413","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100343424","display_name":"Jiaxin Li","orcid":"https://orcid.org/0000-0002-8594-0506"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Jiaxin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062252457","display_name":"Gorka Abad","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Abad, Gorka","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024072796","display_name":"Stjepan Picek","orcid":"https://orcid.org/0000-0001-7509-4337"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Picek, Stjepan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5063847107","display_name":"Mauro Conti","orcid":"https://orcid.org/0000-0002-3612-1934"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Conti, Mauro","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12808","display_name":"Ferroelectric and Negative Capacitance Devices","score":0.9651,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12162","display_name":"Cellular Automata and Applications","score":0.9225,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.519104}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5793702},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5547426},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.519104},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43691015}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.19413","pdf_url":"http://arxiv.org/pdf/2409.19413","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.19413","pdf_url":"http://arxiv.org/pdf/2409.19413","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Artificial":[0],"Neural":[1,30],"Networks":[2,31],"(ANNs),":[3],"commonly":[4],"mimicking":[5],"neurons":[6,47],"with":[7,193,208,226,238],"non-linear":[8],"functions":[9],"to":[10,95,130,141,229],"output":[11],"floating-point":[12],"numbers,":[13],"consistently":[14],"receive":[15],"the":[16,38,61,131,138,151,200,214,218,231,244,248,254,270],"same":[17,139],"signals":[18,36],"of":[19,41,65,154,161,183,233,241,247,257,291],"a":[20,42,49,55,66,71,239,263],"data":[21,43,272,277,281,286],"point":[22,44],"during":[23],"its":[24],"forward":[25,39],"time.":[26],"Unlike":[27],"ANNs,":[28],"Spiking":[29],"(SNNs)":[32],"get":[33],"various":[34],"input":[35],"in":[37,48,80,181],"time":[40,197,212],"and":[45,86,102,278],"simulate":[46],"biologically":[50],"plausible":[51],"way,":[52],"i.e.,":[53],"producing":[54],"spike":[56],"(a":[57],"binary":[58],"value)":[59],"if":[60],"accumulated":[62],"membrane":[63],"potential":[64],"neuron":[67],"is":[68,124,143],"larger":[69],"than":[70,187],"threshold.":[72],"Even":[73],"though":[74],"ANNs":[75,109,127,188,205,224],"have":[76,90],"achieved":[77],"remarkable":[78],"success":[79],"multiple":[81],"tasks,":[82],"e.g.,":[83],"face":[84],"recognition":[85],"object":[87],"detection,":[88],"SNNs":[89,142,155,174,207,260],"recently":[91],"obtained":[92],"attention":[93],"due":[94],"their":[96],"low":[97],"power":[98],"consumption,":[99],"fast":[100],"inference,":[101],"event-driven":[103],"properties.":[104],"While":[105],"privacy":[106,153],"threats":[107],"against":[108,167],"are":[110,128,163,175,191],"widely":[111],"explored,":[112],"much":[113],"less":[114],"work":[115],"has":[116],"been":[117],"done":[118],"on":[119,217,243,259,296],"SNNs.":[120,297],"For":[121],"instance,":[122],"it":[123],"well-known":[125],"that":[126,173,269],"vulnerable":[129,177],"Membership":[132],"Inference":[133],"Attack":[134],"(MIA),":[135],"but":[136],"whether":[137],"applies":[140],"not":[144],"explored.":[145],"In":[146],"this":[147],"paper,":[148],"we":[149,222,252,267],"evaluate":[150],"membership":[152],"by":[156,165,261],"considering":[157],"eight":[158],"MIAs,":[159],"seven":[160],"which":[162],"inspired":[164],"MIAs":[166,234,258],"ANNs.":[168],"Our":[169],"evaluation":[170],"results":[171],"show":[172,268],"more":[176],"(maximum":[178,236,289],"10%":[179],"higher":[180],"terms":[182],"balanced":[184],"attack":[185],"accuracy)":[186],"when":[189,203],"both":[190],"trained":[192,225],"neuromorphic":[194,285],"datasets":[195,210,228],"(with":[196],"dimension).":[198],"On":[199],"other":[201],"hand,":[202],"training":[204],"or":[206],"static":[209,227,276],"(without":[211],"dimension),":[213],"vulnerability":[215],"depends":[216],"dataset":[219],"used.":[220],"If":[221],"convert":[223],"SNNs,":[230],"accuracy":[232,246],"drops":[235],"11.5%":[237],"reduction":[240,290],"7.6%":[242],"test":[245],"target":[249],"model).":[250],"Next,":[251],"explore":[253],"impact":[255],"factors":[256],"conducting":[262],"hyperparameter":[264],"study.":[265],"Finally,":[266],"basic":[271],"augmentation":[273,282],"method":[274],"for":[275,284],"two":[279],"recent":[280],"methods":[283],"can":[287],"considerably":[288],"25.7%)":[292],"decrease":[293],"MIAs'":[294],"performance":[295]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403811842","counts_by_year":[],"updated_date":"2025-04-19T00:45:15.206138","created_date":"2024-10-28"}