{"id":"https://openalex.org/W4403709747","doi":"https://doi.org/10.48550/arxiv.2409.11456","title":"Two Stage Segmentation of Cervical Tumors using PocketNet","display_name":"Two Stage Segmentation of Cervical Tumors using PocketNet","publication_year":2024,"publication_date":"2024-09-17","ids":{"openalex":"https://openalex.org/W4403709747","doi":"https://doi.org/10.48550/arxiv.2409.11456"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.11456","pdf_url":"http://arxiv.org/pdf/2409.11456","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2409.11456","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5114388370","display_name":"Awj Twam","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Twam, Awj","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041482167","display_name":"Megan C. Jacobsen","orcid":"https://orcid.org/0000-0002-1757-3628"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jacobsen, Megan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085300553","display_name":"Rachel Glenn","orcid":"https://orcid.org/0000-0003-1238-4905"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Glenn, Rachel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024043125","display_name":"Ann H. Klopp","orcid":"https://orcid.org/0000-0002-2081-0735"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Klopp, Ann","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047017840","display_name":"Aradhana M. Venkatesan","orcid":"https://orcid.org/0000-0002-5033-0820"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Venkatesan, Aradhana M.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5030148633","display_name":"David Fuentes","orcid":"https://orcid.org/0000-0002-2572-6962"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fuentes, David","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9807,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9807,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14510","display_name":"Medical Imaging and Analysis","score":0.942,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9281,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C146357865","wikidata":"https://www.wikidata.org/wiki/Q1123245","display_name":"Stage (stratigraphy)","level":2,"score":0.82228005},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5937475},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.34913975},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.33528775},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.33124757},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.13662398},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.042951316}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.11456","pdf_url":"http://arxiv.org/pdf/2409.11456","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.11456","pdf_url":"http://arxiv.org/pdf/2409.11456","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W4389568370","https://openalex.org/W3108674512","https://openalex.org/W3032375762","https://openalex.org/W3031052312","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2080531066","https://openalex.org/W1995515455","https://openalex.org/W1506200166"],"abstract_inverted_index":{"Cervical":[0],"cancer":[1],"remains":[2],"the":[3,16,40,45,49,52,58,98,109,132,160,172,219],"fourth":[4],"most":[5],"common":[6],"malignancy":[7],"amongst":[8],"women":[9],"worldwide.1":[10],"Concurrent":[11],"chemoradiotherapy":[12],"(CRT)":[13],"serves":[14],"as":[15],"mainstay":[17],"definitive":[18],"treatment":[19,37,85],"regimen":[20],"for":[21,195,200],"locally":[22],"advanced":[23],"cervical":[24,140],"cancers":[25],"and":[26,57,73,76,97,139,145,164,198],"includes":[27],"external":[28],"beam":[29],"radiation":[30],"followed":[31],"by":[32],"brachytherapy.2":[33],"Integral":[34],"to":[35,93,130,158,210],"radiotherapy":[36,148],"planning":[38],"is":[39,70,208],"routine":[41,118,133],"contouring":[42,66,134],"of":[43,51,67,111,135,147,171,218],"both":[44,71,136],"target":[46],"tumor":[47,101,114,196],"at":[48,61],"level":[50],"cervix,":[53,161],"associated":[54,77],"gynecologic":[55],"anatomy":[56],"adjacent":[59],"organs":[60],"risk":[62],"(OARs).":[63],"However,":[64],"manual":[65],"these":[68],"structures":[69,138],"time":[72],"labor":[74],"intensive":[75],"with":[78],"known":[79],"interobserver":[80],"variability":[81],"that":[82,206],"can":[83],"impact":[84],"outcomes.":[86],"While":[87],"multiple":[88],"tools":[89,116],"have":[90],"been":[91],"developed":[92],"automatically":[94],"segment":[95,159],"OARs":[96],"high-risk":[99],"clinical":[100,128],"volume":[102],"(HR-CTV)":[103],"using":[104,117],"computed":[105],"tomography":[106],"(CT)":[107],"images,3,4,5,6":[108],"development":[110],"deep":[112],"learning-based":[113],"segmentation":[115,197,217],"T2-weighted":[119],"(T2w)":[120],"magnetic":[121],"resonance":[122],"imaging":[123],"(MRI)":[124],"addresses":[125],"an":[126],"unmet":[127],"need":[129],"improve":[131],"anatomical":[137],"cancers,":[141],"thereby":[142],"increasing":[143],"quality":[144],"consistency":[146],"planning.":[149],"This":[150],"work":[151],"applied":[152],"a":[153,187],"novel":[154],"deep-learning":[155],"model":[156],"(PocketNet)":[157],"vagina,":[162],"uterus,":[163],"tumor(s)":[165],"on":[166,179],"T2w":[167],"MRI.":[168],"The":[169],"performance":[170],"PocketNet":[173,185,207],"architecture":[174],"was":[175],"evaluated,":[176],"when":[177],"trained":[178],"data":[180],"via":[181],"5-fold":[182],"cross":[183],"validation.":[184],"achieved":[186],"mean":[188],"Dice-Sorensen":[189],"similarity":[190],"coefficient":[191],"(DSC)":[192],"exceeding":[193],"70%":[194],"80%":[199],"organ":[201],"segmentation.":[202],"These":[203],"results":[204],"suggest":[205],"robust":[209],"variations":[211],"in":[212],"contrast":[213],"protocols,":[214],"providing":[215],"reliable":[216],"ROIs.":[220]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403709747","counts_by_year":[],"updated_date":"2024-12-15T08:44:23.896276","created_date":"2024-10-24"}