{"id":"https://openalex.org/W4403707109","doi":"https://doi.org/10.48550/arxiv.2409.11240","title":"Federated Learning with Integrated Sensing, Communication, and\n Computation: Frameworks and Performance Analysis","display_name":"Federated Learning with Integrated Sensing, Communication, and\n Computation: Frameworks and Performance Analysis","publication_year":2024,"publication_date":"2024-09-17","ids":{"openalex":"https://openalex.org/W4403707109","doi":"https://doi.org/10.48550/arxiv.2409.11240"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.11240","pdf_url":"http://arxiv.org/pdf/2409.11240","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2409.11240","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5067550914","display_name":"Yipeng Liang","orcid":"https://orcid.org/0000-0002-5938-3611"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liang, Yipeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019562814","display_name":"Qimei Chen","orcid":"https://orcid.org/0000-0003-2497-8911"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Qimei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100712107","display_name":"Hao Jiang","orcid":"https://orcid.org/0000-0002-9462-3430"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Hao","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10237","display_name":"Cryptography and Data Security","score":0.9837,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10964","display_name":"Wireless Communication Security Techniques","score":0.9532,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64220834},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.5446529},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.39788496},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.08715585}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.11240","pdf_url":"http://arxiv.org/pdf/2409.11240","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.11240","pdf_url":"http://arxiv.org/pdf/2409.11240","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"With":[0],"the":[1,11,48,52,79,83,117,154,196,199],"emergence":[2],"of":[3,51,56,82,198],"integrated":[4],"sensing,":[5],"communication,":[6],"and":[7,25,28,45,54,74,89,100,109,202],"computation":[8],"(ISCC)":[9],"in":[10,86,92,158],"upcoming":[12],"6G":[13],"era,":[14],"federated":[15],"learning":[16],"with":[17,139],"ISCC":[18,84],"(FL-ISCC),":[19],"integrating":[20],"sample":[21,107],"collection,":[22],"local":[23,141,156],"training,":[24],"parameter":[26],"exchange":[27],"aggregation,":[29],"has":[30],"garnered":[31],"increasing":[32],"interest":[33],"for":[34,119],"enhancing":[35],"training":[36],"efficiency.":[37],"Currently,":[38],"FL-ISCC":[39,69,124,200],"primarily":[40],"includes":[41],"two":[42],"algorithms:":[43],"FedAVG-ISCC":[44,73,127,149,159],"FedSGD-ISCC.":[46,75],"However,":[47],"theoretical":[49,98,205],"understanding":[50],"performance":[53,161,168,188],"advantages":[55],"these":[57],"algorithms":[58],"remains":[59],"limited.":[60],"To":[61],"address":[62],"this":[63],"gap,":[64],"we":[65,95],"investigate":[66],"a":[67,97],"general":[68],"framework,":[70],"implementing":[71],"both":[72],"We":[76],"experimentally":[77],"demonstrate":[78],"substantial":[80],"potential":[81],"framework":[85,201],"reducing":[87],"latency":[88],"energy":[90],"consumption":[91],"FL.":[93],"Furthermore,":[94],"provide":[96],"analysis":[99],"comparison.":[101],"The":[102],"results":[103],"reveal":[104],"that:1)":[105],"Both":[106],"collection":[108],"communication":[110,180,191],"errors":[111,181,192],"negatively":[112],"impact":[113],"algorithm":[114],"performance,":[115],"highlighting":[116],"need":[118],"careful":[120],"design":[121],"to":[122,136,171,179],"optimize":[123],"applications.":[125],"2)":[126],"performs":[128],"better":[129],"than":[130,148,182],"FedSGD-ISCC":[131,144,166,175],"under":[132,150],"IID":[133,172],"data":[134,164],"due":[135],"its":[137],"advantage":[138],"multiple":[140,155],"updates.":[142],"3)":[143],"is":[145,176],"more":[146,177],"robust":[147],"non-IID":[151,163],"data,":[152],"where":[153],"updates":[157],"worsen":[160],"as":[162,190],"increases.":[165],"maintains":[167],"levels":[169],"similar":[170],"conditions.":[173],"4)":[174],"resilient":[178],"FedAVG-ISCC,":[183],"which":[184],"suffers":[185],"from":[186],"significant":[187],"degradation":[189],"increase.Extensive":[193],"simulations":[194],"confirm":[195],"effectiveness":[197],"validate":[203],"our":[204],"analysis.":[206]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403707109","counts_by_year":[],"updated_date":"2025-04-15T09:29:45.514410","created_date":"2024-10-24"}