{"id":"https://openalex.org/W4403785555","doi":"https://doi.org/10.48550/arxiv.2409.10702","title":"Model-in-the-Loop (MILO): Accelerating Multimodal AI Data Annotation\n with LLMs","display_name":"Model-in-the-Loop (MILO): Accelerating Multimodal AI Data Annotation\n with LLMs","publication_year":2024,"publication_date":"2024-09-16","ids":{"openalex":"https://openalex.org/W4403785555","doi":"https://doi.org/10.48550/arxiv.2409.10702"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.10702","pdf_url":"http://arxiv.org/pdf/2409.10702","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2409.10702","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5071697797","display_name":"Y. Q. Wang","orcid":"https://orcid.org/0000-0002-9558-586X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yifan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027025893","display_name":"David Stevens","orcid":"https://orcid.org/0000-0002-8412-2202"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stevens, David","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113059586","display_name":"Pranay Shah","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shah, Pranay","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059471676","display_name":"Wenwen Jiang","orcid":"https://orcid.org/0000-0001-6234-8385"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Wenwen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101516148","display_name":"Miao Liu","orcid":"https://orcid.org/0000-0002-8385-6749"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Miao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100385692","display_name":"Xu Chen","orcid":"https://orcid.org/0000-0001-9943-6020"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Xu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108882503","display_name":"Robert Kuo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kuo, Robert","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100368110","display_name":"Na Li","orcid":"https://orcid.org/0000-0002-4112-0944"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Na","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028422636","display_name":"Boying Gong","orcid":"https://orcid.org/0000-0001-7326-4603"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gong, Boying","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100436289","display_name":"Dong Soo Lee","orcid":"https://orcid.org/0000-0002-6990-4441"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Daniel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009294988","display_name":"Jiabo Hu","orcid":"https://orcid.org/0000-0003-1974-984X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Jiabo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029637520","display_name":"Ning Zhang","orcid":"https://orcid.org/0000-0002-8088-0428"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Ning","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5114414520","display_name":"Bob Kamma","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kamma, Bob","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10215","display_name":"Semantic Web and Ontologies","score":0.9763,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10215","display_name":"Semantic Web and Ontologies","score":0.9763,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9725,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.7319633},{"id":"https://openalex.org/C184670325","wikidata":"https://www.wikidata.org/wiki/Q512604","display_name":"Loop (graph theory)","level":2,"score":0.48120525},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.448051},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37403214},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09783882},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.10702","pdf_url":"http://arxiv.org/pdf/2409.10702","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.10702","pdf_url":"http://arxiv.org/pdf/2409.10702","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2625833328","https://openalex.org/W2392921965","https://openalex.org/W2377979023","https://openalex.org/W2361861616","https://openalex.org/W2358755282","https://openalex.org/W2263699433","https://openalex.org/W2218034408"],"abstract_inverted_index":{"The":[0,123],"growing":[1],"demand":[2],"for":[3,114,128],"AI":[4],"training":[5],"data":[6,9,93,103],"has":[7,126],"transformed":[8],"annotation":[10,43,94,136],"into":[11,41],"a":[12,48],"global":[13],"industry,":[14],"but":[15],"traditional":[16],"approaches":[17],"relying":[18],"on":[19,75,91,120,134],"human":[20,58,84,135,143],"annotators":[21,59,85],"are":[22],"often":[23],"time-consuming,":[24],"labor-intensive,":[25],"and":[26,60,70,73,86,105,117,138,144],"prone":[27],"to":[28],"inconsistent":[29],"quality.":[30],"We":[31,109],"propose":[32],"the":[33,42,53],"Model-in-the-Loop":[34],"(MILO)":[35],"framework,":[36],"which":[37],"integrates":[38],"AI/ML":[39,130],"models":[40,63],"process.":[44],"Our":[45],"research":[46],"introduces":[47],"collaborative":[49],"paradigm":[50],"that":[51],"leverages":[52],"strengths":[54],"of":[55],"both":[56],"professional":[57],"large":[61],"language":[62],"(LLMs).":[64],"By":[65],"employing":[66],"LLMs":[67],"as":[68],"pre-annotation":[69],"real-time":[71],"assistants,":[72],"judges":[74],"annotator":[76,107],"responses,":[77],"MILO":[78,124],"enables":[79],"effective":[80],"interaction":[81],"patterns":[82],"between":[83,142],"LLMs.":[87],"Three":[88],"empirical":[89],"studies":[90],"multimodal":[92],"demonstrate":[95],"MILO's":[96],"efficacy":[97],"in":[98],"reducing":[99,132],"handling":[100],"time,":[101],"improving":[102],"quality,":[104],"enhancing":[106],"experiences.":[108],"also":[110],"introduce":[111],"quality":[112],"rubrics":[113],"flexible":[115],"evaluation":[116],"fine-grained":[118],"feedback":[119],"open-ended":[121],"annotations.":[122],"framework":[125],"implications":[127],"accelerating":[129],"development,":[131],"reliance":[133],"alone,":[137],"promoting":[139],"better":[140],"alignment":[141],"machine":[145],"values.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403785555","counts_by_year":[],"updated_date":"2024-12-07T04:21:00.483914","created_date":"2024-10-26"}