{"id":"https://openalex.org/W4403709562","doi":"https://doi.org/10.48550/arxiv.2409.10576","title":"Language Models and Retrieval Augmented Generation for Automated\n Structured Data Extraction from Diagnostic Reports","display_name":"Language Models and Retrieval Augmented Generation for Automated\n Structured Data Extraction from Diagnostic Reports","publication_year":2024,"publication_date":"2024-09-15","ids":{"openalex":"https://openalex.org/W4403709562","doi":"https://doi.org/10.48550/arxiv.2409.10576"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.10576","pdf_url":"http://arxiv.org/pdf/2409.10576","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2409.10576","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022563719","display_name":"Mohamed Sobhi Jabal","orcid":"https://orcid.org/0000-0003-2891-8633"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jabal, Mohamed Sobhi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062961779","display_name":"Pranav Warman","orcid":"https://orcid.org/0000-0001-5199-2474"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Warman, Pranav","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101705907","display_name":"Jikai Zhang","orcid":"https://orcid.org/0000-0003-2247-0639"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Jikai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036149535","display_name":"Kartikeye Gupta","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gupta, Kartikeye","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101550645","display_name":"Ayush Jain","orcid":"https://orcid.org/0000-0003-1411-2356"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jain, Ayush","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001300575","display_name":"Maciej A. Mazurowski","orcid":"https://orcid.org/0000-0003-4202-8602"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mazurowski, Maciej","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021861705","display_name":"Walter F. Wiggins","orcid":"https://orcid.org/0000-0002-0258-2708"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wiggins, Walter","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066782057","display_name":"Kirti Magudia","orcid":"https://orcid.org/0000-0001-7037-433X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Magudia, Kirti","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5040692678","display_name":"Evan Calabrese","orcid":"https://orcid.org/0000-0002-1464-0354"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Calabrese, Evan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.8923,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.8923,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11710","display_name":"Biomedical Text Mining and Ontologies","score":0.8294,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.718877},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.69043005},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5159893},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.50346416},{"id":"https://openalex.org/C4725764","wikidata":"https://www.wikidata.org/wiki/Q844704","display_name":"Extraction (chemistry)","level":2,"score":0.42188162},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.41144502},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.10576","pdf_url":"http://arxiv.org/pdf/2409.10576","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.10576","pdf_url":"http://arxiv.org/pdf/2409.10576","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3204019825","https://openalex.org/W3188962172","https://openalex.org/W3148217948","https://openalex.org/W2975617233","https://openalex.org/W2392827053","https://openalex.org/W2388704129","https://openalex.org/W2377297411","https://openalex.org/W2375788636","https://openalex.org/W2358561207","https://openalex.org/W2169518243"],"abstract_inverted_index":{"Purpose:":[0],"To":[1],"develop":[2],"and":[3,16,25,30,43,58,63,86,99,121,141,148,202],"evaluate":[4],"an":[5],"automated":[6,75,183],"system":[7],"for":[8,54,68,124,166,172,182,210,219,228],"extracting":[9,115],"structured":[10,186],"clinical":[11,187,191],"information":[12],"from":[13,118,129,189],"unstructured":[14,190],"radiology":[15,51,119,174],"pathology":[17,65,130,168],"reports":[18,52,66,120,169,192],"using":[19,205],"open-weights":[20],"large":[21],"language":[22],"models":[23,109,144],"(LMs)":[24],"retrieval":[26],"augmented":[27],"generation":[28],"(RAG),":[29],"to":[31,79],"assess":[32],"the":[33,81,226],"effects":[34],"of":[35,83,91,185],"model":[36,92,134,198],"configuration":[37],"variables":[38],"on":[39,156],"extraction":[40,128,184],"performance.":[41,157,212],"Methods":[42],"Materials:":[44],"The":[45,89,106,132],"study":[46],"utilized":[47],"two":[48],"datasets:":[49],"7,294":[50],"annotated":[53,67,206],"Brain":[55],"Tumor":[56],"Reporting":[57],"Data":[59],"System":[60],"(BT-RADS)":[61],"scores":[62,117],"2,154":[64],"isocitrate":[69],"dehydrogenase":[70],"(IDH)":[71],"mutation":[72,126],"status.":[73],"An":[74],"pipeline":[76],"was":[77,102],"developed":[78],"benchmark":[80],"performance":[82,165],"various":[84],"LMs":[85,178],"RAG":[87,163],"configurations.":[88],"impact":[90,155],"size,":[93],"quantization,":[94],"prompting":[95,159],"strategies,":[96],"output":[97],"formatting,":[98],"inference":[100],"parameters":[101],"systematically":[103],"evaluated.":[104],"Results:":[105],"best":[107],"performing":[108],"achieved":[110],"over":[111,122],"98%":[112],"accuracy":[113],"in":[114,222,231],"BT-RADS":[116],"90%":[123],"IDH":[125],"status":[127],"reports.":[131,175],"top":[133],"being":[135],"medical":[136],"fine-tuned":[137,143],"llama3.":[138],"Larger,":[139],"newer,":[140],"domain":[142],"consistently":[145],"outperformed":[146],"older":[147],"smaller":[149],"models.":[150],"Model":[151],"quantization":[152],"had":[153],"minimal":[154],"Few-shot":[158],"significantly":[160],"improved":[161,164],"accuracy.":[162],"complex":[167],"but":[170],"not":[171],"shorter":[173],"Conclusions:":[176],"Open":[177],"demonstrate":[179],"significant":[180],"potential":[181,227],"data":[188,207,233],"with":[193],"local":[194],"privacy-preserving":[195],"application.":[196],"Careful":[197],"selection,":[199],"prompt":[200],"engineering,":[201],"semi-automated":[203],"optimization":[204],"are":[208],"critical":[209],"optimal":[211],"These":[213],"approaches":[214],"could":[215],"be":[216],"reliable":[217],"enough":[218],"practical":[220],"use":[221],"research":[223],"workflows,":[224],"highlighting":[225],"human-machine":[229],"collaboration":[230],"healthcare":[232],"extraction.":[234]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403709562","counts_by_year":[],"updated_date":"2025-04-05T10:27:05.712117","created_date":"2024-10-24"}