{"id":"https://openalex.org/W4403702574","doi":"https://doi.org/10.48550/arxiv.2409.10089","title":"Cross-modality image synthesis from TOF-MRA to CTA using diffusion-based\n models","display_name":"Cross-modality image synthesis from TOF-MRA to CTA using diffusion-based\n models","publication_year":2024,"publication_date":"2024-09-16","ids":{"openalex":"https://openalex.org/W4403702574","doi":"https://doi.org/10.48550/arxiv.2409.10089"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.10089","pdf_url":"http://arxiv.org/pdf/2409.10089","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2409.10089","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5067814971","display_name":"Alexander Koch","orcid":"https://orcid.org/0000-0002-3510-9669"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Koch, Alexander","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059257321","display_name":"Orhun Utku Aydin","orcid":"https://orcid.org/0000-0002-8808-7651"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Aydin, Orhun Utku","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024004096","display_name":"Adam Hilbert","orcid":"https://orcid.org/0000-0003-3447-5453"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hilbert, Adam","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075542657","display_name":"Jana Rieger","orcid":"https://orcid.org/0000-0002-3906-316X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rieger, Jana","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076875499","display_name":"Satoru Tanioka","orcid":"https://orcid.org/0000-0002-4678-6163"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tanioka, Satoru","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009476735","display_name":"Fujimaro Ishida","orcid":"https://orcid.org/0000-0001-6324-027X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ishida, Fujimaro","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5083903227","display_name":"Dietmar Frey","orcid":"https://orcid.org/0000-0001-5407-2331"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Frey, Dietmar","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9541,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9541,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/modality","display_name":"Modality (human\u2013computer interaction)","score":0.7027881}],"concepts":[{"id":"https://openalex.org/C2780226545","wikidata":"https://www.wikidata.org/wiki/Q6888030","display_name":"Modality (human\u2013computer interaction)","level":2,"score":0.7027881},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.47352052},{"id":"https://openalex.org/C69357855","wikidata":"https://www.wikidata.org/wiki/Q163214","display_name":"Diffusion","level":2,"score":0.45663738},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.44922793},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42710385},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.40870076},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.16852033},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.10089","pdf_url":"http://arxiv.org/pdf/2409.10089","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.10089","pdf_url":"http://arxiv.org/pdf/2409.10089","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3116076068","https://openalex.org/W2951359407","https://openalex.org/W2772917594","https://openalex.org/W2755342338","https://openalex.org/W2229312674","https://openalex.org/W2166024367","https://openalex.org/W2079911747","https://openalex.org/W2058170566","https://openalex.org/W2036807459","https://openalex.org/W1969923398"],"abstract_inverted_index":{"Cerebrovascular":[0],"disease":[1],"often":[2],"requires":[3],"multiple":[4],"imaging":[5],"modalities":[6],"for":[7,61,99,155],"accurate":[8],"diagnosis,":[9],"treatment,":[10],"and":[11,17,36,54,69,94,107,134,151],"monitoring.":[12],"Computed":[13],"Tomography":[14],"Angiography":[15,21],"(CTA)":[16],"Time-of-Flight":[18],"Magnetic":[19],"Resonance":[20],"(TOF-MRA)":[22],"are":[23],"two":[24],"common":[25],"non-invasive":[26],"angiography":[27],"techniques,":[28],"each":[29],"with":[30],"distinct":[31],"strengths":[32],"in":[33,45,80,159],"accessibility,":[34],"safety,":[35,63],"diagnostic":[37,56],"accuracy.":[38],"While":[39],"CTA":[40,79,89,120,133],"is":[41,59,84],"more":[42],"widely":[43],"used":[44],"acute":[46],"stroke":[47],"due":[48],"to":[49,117,132],"its":[50,62],"faster":[51],"acquisition":[52],"times":[53],"higher":[55],"accuracy,":[57],"TOF-MRA":[58,123,131],"preferred":[60],"as":[64,102],"it":[65],"avoids":[66],"radiation":[67],"exposure":[68],"contrast":[70],"agent-related":[71],"health":[72],"risks.":[73],"Despite":[74],"the":[75,92,127],"predominant":[76],"role":[77],"of":[78,87,96],"clinical":[81],"workflows,":[82],"there":[83],"a":[85,140],"scarcity":[86],"open-source":[88],"data,":[90],"limiting":[91],"research":[93],"development":[95],"AI":[97],"models":[98,116,138],"tasks":[100],"such":[101],"large":[103],"vessel":[104],"occlusion":[105],"detection":[106],"aneurysm":[108],"segmentation.":[109],"This":[110],"study":[111],"explores":[112],"diffusion-based":[113],"image-to-image":[114],"translation":[115,162],"generate":[118],"synthetic":[119],"images":[121],"from":[122,130],"input.":[124],"We":[125],"demonstrate":[126],"modality":[128],"conversion":[129],"show":[135],"that":[136],"diffusion":[137,149],"outperform":[139],"traditional":[141],"U-Net-based":[142],"approach.":[143],"Our":[144],"work":[145],"compares":[146],"different":[147],"state-of-the-art":[148],"architectures":[150],"samplers,":[152],"offering":[153],"recommendations":[154],"optimal":[156],"model":[157],"performance":[158],"this":[160],"cross-modality":[161],"task.":[163]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403702574","counts_by_year":[],"updated_date":"2025-04-08T22:21:04.766896","created_date":"2024-10-24"}