{"id":"https://openalex.org/W4403585675","doi":"https://doi.org/10.48550/arxiv.2409.03336","title":"Estimating Indoor Scene Depth Maps from Ultrasonic Echoes","display_name":"Estimating Indoor Scene Depth Maps from Ultrasonic Echoes","publication_year":2024,"publication_date":"2024-09-05","ids":{"openalex":"https://openalex.org/W4403585675","doi":"https://doi.org/10.48550/arxiv.2409.03336"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.03336","pdf_url":"http://arxiv.org/pdf/2409.03336","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2409.03336","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5014272552","display_name":"Junpei HONMA","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Honma, Junpei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074908683","display_name":"Akisato Kimura","orcid":"https://orcid.org/0009-0007-3042-6810"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kimura, Akisato","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5055847384","display_name":"Go Irie","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Irie, Go","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9662,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9662,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.944,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.932,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C81288441","wikidata":"https://www.wikidata.org/wiki/Q20736125","display_name":"Ultrasonic sensor","level":2,"score":0.75189304},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.47703502},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.4273888},{"id":"https://openalex.org/C24890656","wikidata":"https://www.wikidata.org/wiki/Q82811","display_name":"Acoustics","level":1,"score":0.40233046},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3988918},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.39269388},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.37205726},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.35792887},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.33559555},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.11187011}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.03336","pdf_url":"http://arxiv.org/pdf/2409.03336","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.03336","pdf_url":"http://arxiv.org/pdf/2409.03336","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4247875078","https://openalex.org/W4238525810","https://openalex.org/W4238161731","https://openalex.org/W2618703391","https://openalex.org/W2380594826","https://openalex.org/W2361945759","https://openalex.org/W2349331384","https://openalex.org/W2033547812","https://openalex.org/W2031629218","https://openalex.org/W1934323445"],"abstract_inverted_index":{"Measuring":[0],"3D":[1],"geometric":[2],"structures":[3],"of":[4,35,102,121,160],"indoor":[5],"scenes":[6],"requires":[7],"dedicated":[8],"depth":[9,17,70,87,115,163],"sensors,":[10],"which":[11],"are":[12,93],"not":[13],"always":[14],"available.":[15],"Echo-based":[16],"estimation":[18,71,88,116,164,187],"has":[19,95],"recently":[20],"been":[21],"studied":[22],"as":[23,169],"a":[24,151,178],"promising":[25],"alternative":[26],"solution.":[27],"All":[28],"previous":[29],"studies":[30],"have":[31],"assumed":[32],"the":[33,38,85,114,119,122,128,134,138,158,186],"use":[34],"echoes":[36,48,92,168],"in":[37,52,83],"audible":[39,47,60,167],"range.":[40],"However,":[41],"one":[42],"major":[43],"problem":[44],"is":[45,62,125],"that":[46,133,182],"cannot":[49],"be":[50],"used":[51,94],"quiet":[53],"spaces":[54],"or":[55],"other":[56],"situations":[57],"where":[58],"producing":[59],"sounds":[61],"prohibited.":[63],"In":[64],"this":[65,147],"paper,":[66],"we":[67,149],"consider":[68],"echo-based":[69,162],"using":[72,166],"inaudible":[73],"ultrasonic":[74,77,91,143,161],"echoes.":[75],"While":[76],"waves":[78],"provide":[79],"high":[80],"measurement":[81],"accuracy":[82,89,117,135,159],"theory,":[84],"actual":[86],"when":[90,118,137],"remained":[96],"unclear,":[97],"due":[98],"to":[99,105,109,127,142,156],"its":[100],"disadvantage":[101],"being":[103],"sensitive":[104],"noise":[106],"and":[107,131],"susceptible":[108],"attenuation.":[110],"We":[111],"first":[112],"investigate":[113],"frequency":[120,139],"sound":[123],"source":[124],"restricted":[126],"high-frequency":[129],"band,":[130],"found":[132],"decreased":[136],"was":[140],"limited":[141],"ranges.":[144],"Based":[145],"on":[146],"observation,":[148],"propose":[150],"novel":[152],"deep":[153],"learning":[154],"method":[155,184],"improve":[157],"by":[165],"auxiliary":[170],"data":[171],"only":[172],"during":[173],"training.":[174],"Experimental":[175],"results":[176],"with":[177],"public":[179],"dataset":[180],"demonstrate":[181],"our":[183],"improves":[185],"accuracy.":[188]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403585675","counts_by_year":[],"updated_date":"2025-01-19T16:41:45.565108","created_date":"2024-10-21"}