{"id":"https://openalex.org/W4403589924","doi":"https://doi.org/10.48550/arxiv.2409.02813","title":"MMMU-Pro: A More Robust Multi-discipline Multimodal Understanding\n Benchmark","display_name":"MMMU-Pro: A More Robust Multi-discipline Multimodal Understanding\n Benchmark","publication_year":2024,"publication_date":"2024-09-04","ids":{"openalex":"https://openalex.org/W4403589924","doi":"https://doi.org/10.48550/arxiv.2409.02813"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.02813","pdf_url":"http://arxiv.org/pdf/2409.02813","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2409.02813","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5086600391","display_name":"Xiang Yue","orcid":"https://orcid.org/0000-0003-4547-1685"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yue, Xiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101578269","display_name":"Tianyu Zheng","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Tianyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108988983","display_name":"Yuansheng Ni","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ni, Yuansheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100383179","display_name":"Yubo Wang","orcid":"https://orcid.org/0000-0001-6977-239X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yubo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100324056","display_name":"Kai Zhang","orcid":"https://orcid.org/0000-0003-3850-5429"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Kai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055545928","display_name":"Shengbang Tong","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tong, Shengbang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103108299","display_name":"Yuxuan Sun","orcid":"https://orcid.org/0000-0002-1277-4316"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Yuxuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113429457","display_name":"Botao Yu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Botao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044203241","display_name":"Ge ZHANG","orcid":"https://orcid.org/0000-0003-4694-5221"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Ge","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101488340","display_name":"Huan Sun","orcid":"https://orcid.org/0000-0001-6436-4813"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Huan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075435632","display_name":"Yu Su","orcid":"https://orcid.org/0000-0003-4306-0161"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Su, Yu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103103242","display_name":"Wenhu Chen","orcid":"https://orcid.org/0000-0002-8609-7821"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Wenhu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5068811427","display_name":"Graham Neubig","orcid":"https://orcid.org/0000-0002-2072-3789"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Neubig, Graham","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9676,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9676,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12031","display_name":"Speech and dialogue systems","score":0.9565,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.76096344}],"concepts":[{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.76096344},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5396647},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38052875},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.32535517},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.13253736},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.09502262}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.02813","pdf_url":"http://arxiv.org/pdf/2409.02813","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.02813","pdf_url":"http://arxiv.org/pdf/2409.02813","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"This":[0,59],"paper":[1],"introduces":[2],"MMMU-Pro,":[3],"a":[4,28,49,70,129],"robust":[5],"version":[6],"of":[7,75,106,111],"the":[8,104],"Massive":[9],"Multi-discipline":[10],"Multimodal":[11],"Understanding":[12],"and":[13,24,46,66,79,109,138],"Reasoning":[14],"(MMMU)":[15],"benchmark.":[16],"MMMU-Pro":[17,91,127],"rigorously":[18],"assesses":[19],"multimodal":[20,146],"models'":[21],"true":[22],"understanding":[23],"reasoning":[25],"capabilities":[26],"through":[27],"three-step":[29],"process":[30],"based":[31],"on":[32,90,93],"MMMU:":[33],"(1)":[34],"filtering":[35],"out":[36],"questions":[37,54],"answerable":[38],"by":[39],"text-only":[40],"models,":[41],"(2)":[42],"augmenting":[43],"candidate":[44],"options,":[45],"(3)":[47],"introducing":[48],"vision-only":[50],"input":[51],"setting":[52,60],"where":[53],"are":[55],"embedded":[56],"within":[57],"images.":[58],"challenges":[61],"AI":[62],"to":[63,98],"truly":[64],"\"see\"":[65],"\"read\"":[67],"simultaneously,":[68],"testing":[69],"fundamental":[71],"human":[72],"cognitive":[73],"skill":[74],"seamlessly":[76],"integrating":[77],"visual":[78],"textual":[80],"information.":[81],"Results":[82],"show":[83],"that":[84,116],"model":[85],"performance":[86],"is":[87],"substantially":[88],"lower":[89],"than":[92],"MMMU,":[94],"ranging":[95],"from":[96],"16.8%":[97],"26.9%":[99],"across":[100],"models.":[101],"We":[102],"explore":[103],"impact":[105],"OCR":[107,117],"prompts":[108,118],"Chain":[110],"Thought":[112],"(CoT)":[113],"reasoning,":[114],"finding":[115],"have":[119],"minimal":[120],"effect":[121],"while":[122],"CoT":[123],"generally":[124],"improves":[125],"performance.":[126],"provides":[128],"more":[130],"rigorous":[131],"evaluation":[132],"tool,":[133],"closely":[134],"mimicking":[135],"real-world":[136],"scenarios":[137],"offering":[139],"valuable":[140],"directions":[141],"for":[142],"future":[143],"research":[144],"in":[145],"AI.":[147]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403589924","counts_by_year":[],"updated_date":"2025-04-22T19:14:54.882908","created_date":"2024-10-21"}