{"id":"https://openalex.org/W4402954859","doi":"https://doi.org/10.48550/arxiv.2409.01544","title":"Learning Task-Specific Sampling Strategy for Sparse-View CT\n Reconstruction","display_name":"Learning Task-Specific Sampling Strategy for Sparse-View CT\n Reconstruction","publication_year":2024,"publication_date":"2024-09-02","ids":{"openalex":"https://openalex.org/W4402954859","doi":"https://doi.org/10.48550/arxiv.2409.01544"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.01544","pdf_url":"http://arxiv.org/pdf/2409.01544","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2409.01544","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5019472500","display_name":"Liutao Yang","orcid":"https://orcid.org/0000-0001-5187-3440"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Liutao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069163726","display_name":"Jiahao Huang","orcid":"https://orcid.org/0000-0001-9326-5320"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Jiahao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085166013","display_name":"Yingying Fang","orcid":"https://orcid.org/0000-0001-6334-8635"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fang, Yingying","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013015879","display_name":"Angelica I. Avil\u00e9s-Rivero","orcid":"https://orcid.org/0000-0002-8878-0325"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Aviles-Rivero, Angelica I","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033880300","display_name":"Carola\u2010Bibiane Sch\u00f6nlieb","orcid":"https://orcid.org/0000-0003-0099-6306"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Schonlieb, Carola-Bibiane","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018821033","display_name":"Daoqiang Zhang","orcid":"https://orcid.org/0000-0002-5658-7643"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Daoqiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5091576463","display_name":"Guang Yang","orcid":"https://orcid.org/0000-0003-3001-2830"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Guang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12386","display_name":"Advanced X-ray and CT Imaging","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12386","display_name":"Advanced X-ray and CT Imaging","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9573,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.63259983},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.5808239},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5643337},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47351742},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.32311034},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.105131894},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.01544","pdf_url":"http://arxiv.org/pdf/2409.01544","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.01544","pdf_url":"http://arxiv.org/pdf/2409.01544","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3116076068","https://openalex.org/W2951359407","https://openalex.org/W2775347418","https://openalex.org/W2772917594","https://openalex.org/W2755342338","https://openalex.org/W2229312674","https://openalex.org/W2166024367","https://openalex.org/W2079911747","https://openalex.org/W2058170566","https://openalex.org/W1969923398"],"abstract_inverted_index":{"Sparse-View":[0],"Computed":[1],"Tomography":[2],"(SVCT)":[3],"offers":[4],"low-dose":[5],"and":[6,146,217],"fast":[7],"imaging":[8,25,145,172,211],"but":[9],"suffers":[10],"from":[11],"severe":[12],"artifacts.":[13],"Optimizing":[14],"the":[15,24,44,47,54,141,164,179,196,226],"sampling":[16,36,105,120,129,168,184],"strategy":[17,37,49,77,130],"is":[18],"an":[19],"essential":[20],"approach":[21,110],"to":[22,89,111,139],"improving":[23],"quality":[26,142],"of":[27,41,137,143,151,166,182,198],"SVCT.":[28],"However,":[29],"current":[30,210],"methods":[31],"typically":[32],"optimize":[33],"a":[34,98,108,113,127,199,203],"universal":[35],"for":[38,78,122,134,163,219],"all":[39],"types":[40,160],"scans,":[42],"overlooking":[43],"fact":[45],"that":[46,102],"optimal":[48,76,119],"may":[50,82],"vary":[51],"depending":[52],"on":[53,209],"specific":[55],"scanning":[56,80,159],"task,":[57],"whether":[58],"it":[59],"involves":[60],"particular":[61],"body":[62],"scans":[63,138],"(e.g.,":[64,72],"chest":[65],"CT":[66],"scans)":[67],"or":[68],"downstream":[69,152,176,192],"clinical":[70,153,180],"applications":[71],"disease":[73],"diagnosis).":[74],"The":[75],"one":[79],"task":[81,193],"not":[83],"perform":[84],"as":[85,186],"well":[86],"when":[87],"applied":[88,133],"other":[90],"tasks.":[91],"To":[92],"address":[93],"this":[94],"problem,":[95],"we":[96],"propose":[97],"deep":[99],"learning":[100],"framework":[101,201],"learns":[103],"task-specific":[104,128,167,215],"strategies":[106,121,169],"with":[107,202,213],"multi-task":[109,200],"train":[112],"unified":[114],"reconstruction":[115,205],"network":[116,206],"while":[117],"tailoring":[118],"each":[123,135],"individual":[124],"task.":[125],"Thus,":[126],"can":[131],"be":[132],"type":[136],"improve":[140],"SVCT":[144],"further":[147],"assist":[148],"in":[149,170,191],"performance":[150],"usage.":[154],"Extensive":[155],"experiments":[156],"across":[157],"different":[158],"provide":[161],"validation":[162],"effectiveness":[165],"enhancing":[171],"quality.":[173],"Experiments":[174],"involving":[175],"tasks":[177,223],"verify":[178],"value":[181],"learned":[183],"strategies,":[185],"evidenced":[187],"by":[188],"notable":[189],"improvements":[190],"performance.":[194],"Furthermore,":[195],"utilization":[197],"shared":[204],"facilitates":[207],"deployment":[208],"devices":[212],"switchable":[214],"modules,":[216],"allows":[218],"easily":[220],"integrate":[221],"new":[222],"without":[224],"retraining":[225],"entire":[227],"model.":[228]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4402954859","counts_by_year":[],"updated_date":"2024-12-25T01:57:35.561186","created_date":"2024-09-29"}