{"id":"https://openalex.org/W4402953850","doi":"https://doi.org/10.48550/arxiv.2409.00670","title":"Towards Faster Graph Partitioning via Pre-training and Inductive\n Inference","display_name":"Towards Faster Graph Partitioning via Pre-training and Inductive\n Inference","publication_year":2024,"publication_date":"2024-09-01","ids":{"openalex":"https://openalex.org/W4402953850","doi":"https://doi.org/10.48550/arxiv.2409.00670"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.00670","pdf_url":"http://arxiv.org/pdf/2409.00670","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2409.00670","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100754442","display_name":"Meng Qin","orcid":"https://orcid.org/0000-0003-3036-203X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qin, Meng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007808758","display_name":"Chaorui Zhang","orcid":"https://orcid.org/0000-0002-1530-2584"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Chaorui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101735325","display_name":"Yu Gao","orcid":"https://orcid.org/0000-0002-7025-8184"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gao, Yu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111345690","display_name":"Yibin Ding","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ding, Yibin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041006470","display_name":"Weipeng Jiang","orcid":"https://orcid.org/0000-0001-5243-5709"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Weipeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101915841","display_name":"Weixi Zhang","orcid":"https://orcid.org/0009-0007-4769-2779"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Weixi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101457350","display_name":"Wei Han","orcid":"https://orcid.org/0000-0003-4300-0687"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Han, Wei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5001405009","display_name":"Bo Bai","orcid":"https://orcid.org/0000-0003-4796-8249"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bai, Bo","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12292","display_name":"Graph Theory and Algorithms","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12292","display_name":"Graph Theory and Algorithms","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12288","display_name":"Optimization and Search Problems","score":0.9695,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":0.9642,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/inductive-reasoning","display_name":"Inductive Reasoning","score":0.5200157}],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.7212271},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5502824},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5379484},{"id":"https://openalex.org/C21563000","wikidata":"https://www.wikidata.org/wiki/Q484511","display_name":"Inductive reasoning","level":2,"score":0.5200157},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4066031},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39386943},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3601635}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.00670","pdf_url":"http://arxiv.org/pdf/2409.00670","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2409.00670","pdf_url":"http://arxiv.org/pdf/2409.00670","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2479445596","https://openalex.org/W2381724853","https://openalex.org/W2379984741","https://openalex.org/W2377374277","https://openalex.org/W2371326990","https://openalex.org/W2369508406","https://openalex.org/W2116330613","https://openalex.org/W2032766401","https://openalex.org/W2004816703","https://openalex.org/W1507510709"],"abstract_inverted_index":{"Graph":[0,22,39,178],"partitioning":[1],"(GP)":[2],"is":[3],"a":[4,13,43,56,103,150,157,198],"classic":[5],"problem":[6],"that":[7,182],"divides":[8],"the":[9,19,52,72,81,99,116,123,135,154,163,169,177],"node":[10],"set":[11],"of":[12,55,75,106,118,128,152,156],"graph":[14,58,158],"into":[15],"densely-connected":[16],"blocks.":[17],"Following":[18],"IEEE":[20],"HPEC":[21],"Challenge":[23,179],"and":[24,91,126],"recent":[25],"advances":[26],"in":[27],"pre-training":[28,45,54],"techniques":[29],"(e.g.,":[30,111],"large-language":[31],"models),":[32],"we":[33],"propose":[34],"PR-GPT":[35,129,166,183],"(Pre-trained":[36],"&":[37,46],"Refined":[38],"ParTitioning)":[40],"based":[41],"on":[42,62,149,176,188],"novel":[44],"refinement":[47,127,164,199],"paradigm.":[48],"We":[49,96,203],"first":[50],"conduct":[51],"offline":[53],"deep":[57],"learning":[59],"(DGL)":[60],"model":[61,83,86],"small":[63],"synthetic":[64],"graphs":[65,90,190],"with":[66,196],"various":[67],"topology":[68],"properties.":[69],"By":[70],"using":[71],"inductive":[73],"inference":[74,144],"DGL,":[76],"one":[77],"can":[78,130,184],"directly":[79],"generalize":[80],"pre-trained":[82],"(with":[84],"frozen":[85],"parameters)":[87],"to":[88,113,159,171],"large":[89],"derive":[92],"feasible":[93],"GP":[94,109,187],"results.":[95],"also":[97,141,167],"use":[98],"derived":[100],"partition":[101],"as":[102],"good":[104],"initialization":[105],"an":[107],"efficient":[108],"method":[110,200],"InfoMap)":[112],"further":[114],"refine":[115],"quality":[117,139,193],"partitioning.":[119],"In":[120],"this":[121],"setting,":[122],"online":[124],"generalization":[125],"not":[131],"only":[132],"benefit":[133],"from":[134,201],"transfer":[136],"ability":[137],"regarding":[138],"but":[140],"ensure":[142,185],"high":[143],"efficiency":[145],"without":[146,191],"re-training.":[147],"Based":[148],"mechanism":[151],"reducing":[153],"scale":[155],"be":[160],"processed":[161],"by":[162],"method,":[165],"has":[168],"potential":[170],"support":[172],"streaming":[173],"GP.":[174],"Experiments":[175],"benchmark":[180],"demonstrate":[181],"faster":[186],"large-scale":[189],"significant":[192],"degradation,":[194],"compared":[195],"running":[197],"scratch.":[202],"will":[204],"make":[205],"our":[206],"code":[207],"public":[208],"at":[209],"https://github.com/KuroginQin/PRGPT.":[210]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4402953850","counts_by_year":[],"updated_date":"2025-04-23T17:23:46.689409","created_date":"2024-09-29"}