{"id":"https://openalex.org/W4402701864","doi":"https://doi.org/10.48550/arxiv.2408.13980","title":"FusionSAM: Latent Space driven Segment Anything Model for Multimodal\n Fusion and Segmentation","display_name":"FusionSAM: Latent Space driven Segment Anything Model for Multimodal\n Fusion and Segmentation","publication_year":2024,"publication_date":"2024-08-25","ids":{"openalex":"https://openalex.org/W4402701864","doi":"https://doi.org/10.48550/arxiv.2408.13980"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.13980","pdf_url":"http://arxiv.org/pdf/2408.13980","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2408.13980","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057418761","display_name":"Daixun Li","orcid":"https://orcid.org/0009-0006-8689-6929"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Daixun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101755045","display_name":"Weiying Xie","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xie, Weiying","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043187114","display_name":"Mingxiang Cao","orcid":"https://orcid.org/0000-0002-2041-7044"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cao, Mingxiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077062257","display_name":"Yunke Wang","orcid":"https://orcid.org/0009-0003-9796-530X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yunke","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090736129","display_name":"Jiaqing Zhang","orcid":"https://orcid.org/0009-0007-3111-1116"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Jiaqing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067798266","display_name":"Yunsong Li","orcid":"https://orcid.org/0000-0002-0234-6270"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Yunsong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065061505","display_name":"Leyuan Fang","orcid":"https://orcid.org/0000-0003-2351-4461"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fang, Leyuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5045952644","display_name":"Chang Xu","orcid":"https://orcid.org/0000-0002-5968-9290"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Chang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.8921,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.8921,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.64767176},{"id":"https://openalex.org/C158525013","wikidata":"https://www.wikidata.org/wiki/Q2593739","display_name":"Fusion","level":2,"score":0.5632557},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.5212848},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50841445},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.50204897},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32035622},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.062184393},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.13980","pdf_url":"http://arxiv.org/pdf/2408.13980","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.13980","pdf_url":"http://arxiv.org/pdf/2408.13980","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389858081","https://openalex.org/W4385583601","https://openalex.org/W4379231730","https://openalex.org/W4298131179","https://openalex.org/W2967030268","https://openalex.org/W2530546662","https://openalex.org/W2501551404","https://openalex.org/W2099421762","https://openalex.org/W2042327336","https://openalex.org/W2033914206"],"abstract_inverted_index":{"Multimodal":[0],"image":[1,101],"fusion":[2,36,89,128,153,166],"and":[3,43,118,129,146,189],"segmentation":[4,59,102,130,201],"enhance":[5,125],"scene":[6],"understanding":[7],"in":[8,27,84,191],"autonomous":[9,193],"driving":[10,194],"by":[11],"integrating":[12],"data":[13],"from":[14],"various":[15],"sensors.":[16],"However,":[17],"current":[18],"models":[19],"struggle":[20],"to":[21,31,72,124,155,170],"efficiently":[22],"segment":[23],"densely":[24],"packed":[25],"elements":[26],"such":[28],"scenes,":[29],"due":[30],"the":[32,85,104,140,183,204],"absence":[33],"of":[34,87,139],"comprehensive":[35,165],"features":[37,138,167],"that":[38,111,182],"can":[39],"guide":[40,171],"mid-process":[41],"fine-tuning":[42],"focus":[44],"attention":[45],"on":[46,177],"relevant":[47],"areas.":[48],"The":[49],"Segment":[50],"Anything":[51],"Model":[52],"(SAM)":[53],"has":[54,79],"emerged":[55],"as":[56,168],"a":[57,108,150],"transformative":[58],"method.":[60],"It":[61],"provides":[62],"more":[63],"effective":[64],"prompts":[65,169],"through":[66,143],"its":[67],"flexible":[68],"prompt":[69],"encoder,":[70],"compared":[71],"transformers":[73],"lacking":[74],"fine-tuned":[75],"control.":[76],"Nevertheless,":[77],"SAM":[78,98,188],"not":[80],"been":[81],"extensively":[82],"studied":[83],"domain":[86],"multimodal":[88,100,127,192],"for":[90,103],"natural":[91],"images.":[92],"In":[93],"this":[94],"paper,":[95],"we":[96,133,162],"introduce":[97],"into":[99,149],"first":[105,134],"time,":[106],"proposing":[107],"novel":[109],"framework":[110],"combines":[112],"Latent":[113],"Space":[114],"Token":[115],"Generation":[116],"(LSTG)":[117],"Fusion":[119],"Mask":[120],"Prompting":[121],"(FMP)":[122],"modules":[123],"SAM's":[126],"capabilities.":[131],"Specifically,":[132],"obtain":[135],"latent":[136],"space":[137],"two":[141],"modalities":[142],"vector":[144],"quantization":[145],"embed":[147],"them":[148],"cross-attention-based":[151],"inter-domain":[152],"module":[154],"establish":[156],"long-range":[157],"dependencies":[158],"between":[159],"modalities.":[160],"Then,":[161],"use":[163],"these":[164],"precise":[172],"pixel-level":[173],"segmentation.":[174],"Extensive":[175],"experiments":[176],"several":[178],"public":[179],"datasets":[180],"demonstrate":[181],"proposed":[184],"method":[185],"significantly":[186],"outperforms":[187],"SAM2":[190],"scenarios,":[195],"achieving":[196],"at":[197],"least":[198],"3.9$\\%$":[199],"higher":[200],"mIoU":[202],"than":[203],"state-of-the-art":[205],"approaches.":[206]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4402701864","counts_by_year":[],"updated_date":"2025-01-20T08:44:44.001348","created_date":"2024-09-21"}