{"id":"https://openalex.org/W4405622580","doi":"https://doi.org/10.48550/arxiv.2408.12337","title":"Fine-tuning Smaller Language Models for Question Answering over\n Financial Documents","display_name":"Fine-tuning Smaller Language Models for Question Answering over\n Financial Documents","publication_year":2024,"publication_date":"2024-08-22","ids":{"openalex":"https://openalex.org/W4405622580","doi":"https://doi.org/10.48550/arxiv.2408.12337"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.12337","pdf_url":"http://arxiv.org/pdf/2408.12337","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2408.12337","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5078396145","display_name":"Karmvir Singh Phogat","orcid":"https://orcid.org/0000-0001-7458-3083"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Phogat, Karmvir Singh","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048110017","display_name":"Sai Akhil Puranam","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Puranam, Sai Akhil","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043028040","display_name":"Sridhar Dasaratha","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dasaratha, Sridhar","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114103611","display_name":"Chetan Harsha","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Harsha, Chetan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5034824025","display_name":"Shashishekar Ramakrishna","orcid":"https://orcid.org/0000-0002-2832-0415"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ramakrishna, Shashishekar","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9583,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9583,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9492,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.947,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C44291984","wikidata":"https://www.wikidata.org/wiki/Q1074173","display_name":"Question answering","level":2,"score":0.7025974},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.54316807},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.45611852},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.32720083}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.12337","pdf_url":"http://arxiv.org/pdf/2408.12337","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.12337","pdf_url":"http://arxiv.org/pdf/2408.12337","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W4388937922","https://openalex.org/W4288267738","https://openalex.org/W3113264705","https://openalex.org/W3082787378","https://openalex.org/W2964413124","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2387743295","https://openalex.org/W2384605597"],"abstract_inverted_index":{"Recent":[0],"research":[1],"has":[2],"shown":[3],"that":[4,40,56,63,74,105,114,146],"smaller":[5,54,77,156],"language":[6],"models":[7,55,78,119],"can":[8,151],"acquire":[9],"substantial":[10],"reasoning":[11,16,44,68,149],"abilities":[12],"when":[13],"fine-tuned":[14,59,76],"with":[15,130],"exemplars":[17],"crafted":[18],"by":[19,108],"a":[20,88],"significantly":[21],"larger":[22],"teacher":[23,84],"model.":[24,85],"We":[25,48],"explore":[26],"this":[27],"paradigm":[28],"for":[29,135],"the":[30,35,50,65,80,83,100,117,125,132,136],"financial":[31,46,67,127,148],"domain,":[32],"focusing":[33],"on":[34],"challenge":[36],"of":[37,52,82,91],"answering":[38],"questions":[39],"require":[41],"multi-hop":[42],"numerical":[43],"over":[45],"texts.":[47],"assess":[49],"performance":[51,81],"several":[53],"have":[57],"been":[58],"to":[60,98,121],"generate":[61],"programs":[62],"encode":[64],"required":[66,126],"and":[69,123,144],"calculations.":[70],"Our":[71,110],"findings":[72],"demonstrate":[73,145],"these":[75],"approach":[79,97],"To":[86],"provide":[87],"granular":[89],"analysis":[90,112],"model":[92,103],"performance,":[93],"we":[94,142],"propose":[95],"an":[96],"investigate":[99],"specific":[101,137],"student":[102,118],"capabilities":[104],"are":[106],"enhanced":[107],"fine-tuning.":[109],"empirical":[111],"indicates":[113],"fine-tuning":[115],"refines":[116],"ability":[120],"express":[122],"apply":[124],"concepts":[128],"along":[129],"adapting":[131],"entity":[133],"extraction":[134],"data":[138],"format.":[139],"In":[140],"addition,":[141],"hypothesize":[143],"comparable":[147],"capability":[150],"be":[152],"induced":[153],"using":[154],"relatively":[155],"datasets.":[157]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4405622580","counts_by_year":[],"updated_date":"2025-04-10T09:33:10.704994","created_date":"2024-12-20"}