{"id":"https://openalex.org/W4405425555","doi":"https://doi.org/10.48550/arxiv.2408.11194","title":"Compress Guidance in Conditional Diffusion Sampling","display_name":"Compress Guidance in Conditional Diffusion Sampling","publication_year":2024,"publication_date":"2024-08-20","ids":{"openalex":"https://openalex.org/W4405425555","doi":"https://doi.org/10.48550/arxiv.2408.11194"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.11194","pdf_url":"http://arxiv.org/pdf/2408.11194","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2408.11194","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076438262","display_name":"Anh-Dung Dinh","orcid":"https://orcid.org/0009-0005-0473-9747"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dinh, Anh-Dung","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113395527","display_name":"Daochang Liu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Daochang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5090429810","display_name":"Chang Xu","orcid":"https://orcid.org/0000-0002-2627-1250"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Chang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13030","display_name":"Survey Sampling and Estimation Techniques","score":0.8829,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13030","display_name":"Survey Sampling and Estimation Techniques","score":0.8829,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.8579,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.7778,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.5447517},{"id":"https://openalex.org/C69357855","wikidata":"https://www.wikidata.org/wiki/Q163214","display_name":"Diffusion","level":2,"score":0.52851295},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4623102},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.36488187},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.3503576},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2786749},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.100480825},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.09153536},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.08654365},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.11194","pdf_url":"http://arxiv.org/pdf/2408.11194","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.11194","pdf_url":"http://arxiv.org/pdf/2408.11194","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W3107697994","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"We":[0,125],"found":[1],"that":[2,40],"enforcing":[3],"guidance":[4,44,58,81,94,115],"throughout":[5],"the":[6,14,23,29,37,79,108],"sampling":[7,64],"process":[8],"is":[9],"often":[10],"counterproductive":[11],"due":[12],"to":[13,21,96],"model-fitting":[15],"issue,":[16],"where":[17],"samples":[18],"are":[19],"'tuned'":[20],"match":[22],"classifier's":[24],"parameters":[25],"rather":[26],"than":[27],"generalizing":[28],"expected":[30],"condition.":[31],"This":[32,86],"work":[33],"identifies":[34],"and":[35,74,133,140],"quantifies":[36],"problem,":[38],"demonstrating":[39],"reducing":[41,78],"or":[42],"excluding":[43],"at":[45],"numerous":[46],"timesteps":[47,82,116],"can":[48],"mitigate":[49],"this":[50],"issue.":[51],"By":[52],"distributing":[53],"a":[54,60,68,89,111],"small":[55],"amount":[56],"of":[57,63,110,114],"over":[59],"large":[61],"number":[62,113],"timesteps,":[65],"we":[66],"observe":[67],"significant":[69],"improvement":[70],"in":[71,92,122],"image":[72,123],"quality":[73],"diversity":[75],"while":[76,117],"also":[77],"required":[80],"by":[83],"nearly":[84],"40%.":[85],"approach":[87,128],"addresses":[88],"major":[90],"challenge":[91],"applying":[93],"effectively":[95],"generative":[97,135],"tasks.":[98],"Consequently,":[99],"our":[100,127],"proposed":[101],"method,":[102],"termed":[103],"Compress":[104],"Guidance,":[105],"allows":[106],"for":[107],"exclusion":[109],"substantial":[112],"still":[118],"surpassing":[119],"baseline":[120],"models":[121],"quality.":[124],"validate":[126],"through":[129],"benchmarks":[130],"on":[131],"label-conditional":[132],"text-to-image":[134],"tasks":[136],"across":[137],"various":[138],"datasets":[139],"models.":[141]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4405425555","counts_by_year":[],"updated_date":"2025-04-05T20:41:42.475549","created_date":"2024-12-16"}