{"id":"https://openalex.org/W4403006712","doi":"https://doi.org/10.48550/arxiv.2408.10111","title":"PLUTUS: A Well Pre-trained Large Unified Transformer can Unveil\n Financial Time Series Regularities","display_name":"PLUTUS: A Well Pre-trained Large Unified Transformer can Unveil\n Financial Time Series Regularities","publication_year":2024,"publication_date":"2024-08-19","ids":{"openalex":"https://openalex.org/W4403006712","doi":"https://doi.org/10.48550/arxiv.2408.10111"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.10111","pdf_url":"http://arxiv.org/pdf/2408.10111","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2408.10111","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5110276578","display_name":"Yuanjian Xu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Yuanjian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113411158","display_name":"A J Liu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Anxian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109440648","display_name":"J. Y. Hao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hao, Jianing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013493721","display_name":"Zhenzhuo Li","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Zhenzhuo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111348166","display_name":"Shichang Meng","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Meng, Shichang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101696566","display_name":"Guang Zhang","orcid":"https://orcid.org/0000-0002-5233-071X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Guang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9834,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9834,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9116,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.6104646},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.5772838},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.45255744},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.40909237},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.2310726},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12448454},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.105140686},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0937987},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.050381362},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.10111","pdf_url":"http://arxiv.org/pdf/2408.10111","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.10111","pdf_url":"http://arxiv.org/pdf/2408.10111","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4395014643","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Financial":[0],"time":[1,67,106,152,186],"series":[2,153,187],"modeling":[3,104],"is":[4,124,145],"crucial":[5],"for":[6,176,183],"understanding":[7],"and":[8,19,40,78,90,120,170],"predicting":[9],"market":[10],"behaviors":[11],"but":[12],"faces":[13],"challenges":[14],"such":[15],"as":[16],"non-linearity,":[17],"non-stationarity,":[18],"high":[20],"noise":[21],"levels.":[22],"Traditional":[23],"models":[24,50],"struggle":[25],"to":[26,31,81,114,135],"capture":[27,115],"complex":[28],"patterns":[29],"due":[30],"these":[32],"issues,":[33],"compounded":[34],"by":[35,44],"limitations":[36],"in":[37,51,65,137,164,193],"computational":[38],"resources":[39],"model":[41,61,154,175],"capacity.":[42],"Inspired":[43],"the":[45,99,146,194],"success":[46],"of":[47,101,130],"large":[48],"language":[49],"NLP,":[52],"we":[53],"introduce":[54],"$\\textbf{PLUTUS}$,":[55],"a":[56,110,172,190],"$\\textbf{P}$re-trained":[57],"$\\textbf{L}$arge":[58],"$\\textbf{U}$nified":[59],"$\\textbf{T}$ransformer-based":[60],"that":[62],"$\\textbf{U}$nveils":[63],"regularities":[64],"financial":[66,139,151,185],"$\\textbf{S}$eries.":[68],"PLUTUS":[69,123,144],"uses":[70],"an":[71,83,94,127],"invertible":[72],"embedding":[73],"module":[74],"with":[75,155],"contrastive":[76],"learning":[77],"autoencoder":[79],"techniques":[80],"create":[82],"approximate":[84],"one-to-one":[85],"mapping":[86],"between":[87],"raw":[88],"data":[89],"patch":[91],"embeddings.":[92],"TimeFormer,":[93],"attention":[95,112],"based":[96],"architecture,":[97],"forms":[98],"core":[100],"PLUTUS,":[102],"effectively":[103],"high-noise":[105],"series.":[107],"We":[108],"incorporate":[109],"novel":[111],"mechanisms":[113],"features":[116],"across":[117],"both":[118],"variable":[119],"temporal":[121],"dimensions.":[122],"pre-trained":[125,150],"on":[126],"unprecedented":[128],"dataset":[129],"100":[131],"billion":[132,158],"observations,":[133],"designed":[134],"thrive":[136],"noisy":[138],"environments.":[140],"To":[141],"our":[142],"knowledge,":[143],"first":[147],"open-source,":[148],"large-scale,":[149],"over":[156],"one":[157],"parameters.":[159],"It":[160],"achieves":[161],"state-of-the-art":[162],"performance":[163],"various":[165],"tasks,":[166],"demonstrating":[167],"strong":[168],"transferability":[169],"establishing":[171],"robust":[173],"foundational":[174],"finance.":[177],"Our":[178],"research":[179],"provides":[180],"technical":[181],"guidance":[182],"pre-training":[184],"data,":[188],"setting":[189],"new":[191],"standard":[192],"field.":[195]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4403006712","counts_by_year":[],"updated_date":"2025-04-23T17:22:53.540651","created_date":"2024-10-01"}