{"id":"https://openalex.org/W3132361158","doi":"https://doi.org/10.48550/arxiv.2408.05723","title":"Deep Learning with Data Privacy via Residual Perturbation","display_name":"Deep Learning with Data Privacy via Residual Perturbation","publication_year":2024,"publication_date":"2024-08-11","ids":{"openalex":"https://openalex.org/W3132361158","doi":"https://doi.org/10.48550/arxiv.2408.05723","mag":"3132361158"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.05723","pdf_url":"http://arxiv.org/pdf/2408.05723","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2408.05723","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5005875961","display_name":"Wenqi Tao","orcid":"https://orcid.org/0009-0002-4630-7019"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenqi Tao","raw_affiliation_strings":[" Tsinghua University"],"affiliations":[{"raw_affiliation_string":" Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083998974","display_name":"Huaming Ling","orcid":null},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huaming Ling","raw_affiliation_strings":[" Tsinghua University"],"affiliations":[{"raw_affiliation_string":" Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077724126","display_name":"Zuoqiang Shi","orcid":"https://orcid.org/0000-0002-9122-0302"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zuoqiang Shi","raw_affiliation_strings":["Tsinghua Univ. Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Tsinghua Univ. Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5019915753","display_name":"Bao Wang","orcid":"https://orcid.org/0000-0002-5513-8248"},"institutions":[{"id":"https://openalex.org/I223532165","display_name":"University of Utah","ror":"https://ror.org/03r0ha626","country_code":"US","type":"education","lineage":["https://openalex.org/I223532165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Bao Wang","raw_affiliation_strings":["University of Utah"],"affiliations":[{"raw_affiliation_string":"University of Utah","institution_ids":["https://openalex.org/I223532165"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Techniques for Data Analysis and Machine Learning","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Techniques for Data Analysis and Machine Learning","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9853,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/differential-privacy","display_name":"Differential Privacy","score":0.646236},{"id":"https://openalex.org/keywords/privacy-preservation","display_name":"Privacy Preservation","score":0.548753},{"id":"https://openalex.org/keywords/location-privacy","display_name":"Location Privacy","score":0.53236}],"concepts":[{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.8170625},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5383277},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.41814852},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38918057},{"id":"https://openalex.org/C108827166","wikidata":"https://www.wikidata.org/wiki/Q175975","display_name":"Internet privacy","level":1,"score":0.35423672},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.20393193}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.05723","pdf_url":"http://arxiv.org/pdf/2408.05723","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.05723","pdf_url":"http://arxiv.org/pdf/2408.05723","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.67}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4360585206","https://openalex.org/W4323565446","https://openalex.org/W4321369474","https://openalex.org/W4285208911","https://openalex.org/W4213079790","https://openalex.org/W3215138031","https://openalex.org/W3082895349","https://openalex.org/W3009238340","https://openalex.org/W2731899572","https://openalex.org/W2248239756"],"abstract_inverted_index":{"Protecting":[0],"data":[1],"privacy":[2,13,28,71],"in":[3,99],"deep":[4],"learning":[5],"(DL)":[6],"is":[7,86],"of":[8,32,61,78],"crucial":[9],"importance.":[10],"Several":[11],"celebrated":[12],"notions":[14],"have":[15],"been":[16],"established":[17],"and":[18,36,73,89],"used":[19],"for":[20,50],"privacy-preserving":[21,51],"DL.":[22,79],"However,":[23],"many":[24],"existing":[25],"mechanisms":[26],"achieve":[27],"at":[29],"the":[30,75,91],"cost":[31],"significant":[33],"utility":[34,100],"degradation":[35],"computational":[37],"overhead.":[38],"In":[39],"this":[40],"paper,":[41],"we":[42,64,81],"propose":[43],"a":[44],"stochastic":[45,95],"differential":[46,70],"equation-based":[47],"residual":[48,59,67,84],"perturbation":[49,68,85],"DL,":[52],"which":[53],"injects":[54],"Gaussian":[55],"noise":[56],"into":[57],"each":[58],"mapping":[60],"ResNets.":[62],"Theoretically,":[63],"prove":[65],"that":[66,83],"guarantees":[69],"(DP)":[72],"reduces":[74],"generalization":[76],"gap":[77],"Empirically,":[80],"show":[82],"computationally":[87],"efficient":[88],"outperforms":[90],"state-of-the-art":[92],"differentially":[93],"private":[94],"gradient":[96],"descent":[97],"(DPSGD)":[98],"maintenance":[101],"without":[102],"sacrificing":[103],"membership":[104],"privacy.":[105]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3132361158","counts_by_year":[],"updated_date":"2024-12-03T19:15:06.718111","created_date":"2021-03-01"}