{"id":"https://openalex.org/W4402386926","doi":"https://doi.org/10.48550/arxiv.2408.05707","title":"Fast and Scalable Semi-Supervised Learning for Multi-View Subspace\n Clustering","display_name":"Fast and Scalable Semi-Supervised Learning for Multi-View Subspace\n Clustering","publication_year":2024,"publication_date":"2024-08-11","ids":{"openalex":"https://openalex.org/W4402386926","doi":"https://doi.org/10.48550/arxiv.2408.05707"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.05707","pdf_url":"http://arxiv.org/pdf/2408.05707","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2408.05707","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083998974","display_name":"Huaming Ling","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ling, Huaming","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054041500","display_name":"Chenglong Bao","orcid":"https://orcid.org/0000-0002-1201-1212"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bao, Chenglong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057672655","display_name":"Jiebo Song","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Song, Jiebo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5077724126","display_name":"Zuoqiang Shi","orcid":"https://orcid.org/0000-0002-9122-0302"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shi, Zuoqiang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9446,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9446,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9396,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9131,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.70123374},{"id":"https://openalex.org/C32834561","wikidata":"https://www.wikidata.org/wiki/Q660730","display_name":"Subspace topology","level":2,"score":0.69430894},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.6705533},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6280149},{"id":"https://openalex.org/C58973888","wikidata":"https://www.wikidata.org/wiki/Q1041418","display_name":"Semi-supervised learning","level":2,"score":0.505323},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4710828},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36317366},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.069915086}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.05707","pdf_url":"http://arxiv.org/pdf/2408.05707","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2408.05707","pdf_url":"http://arxiv.org/pdf/2408.05707","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390062853","https://openalex.org/W4389256085","https://openalex.org/W3210156800","https://openalex.org/W3033485676","https://openalex.org/W2513638114","https://openalex.org/W2364594919","https://openalex.org/W2219338811","https://openalex.org/W2167092671","https://openalex.org/W1980381208","https://openalex.org/W1861706286"],"abstract_inverted_index":{"In":[0],"this":[1,79],"paper,":[2],"we":[3],"introduce":[4],"a":[5,15,45,57,82,129],"Fast":[6],"and":[7,32,73,116,147],"Scalable":[8],"Semi-supervised":[9],"Multi-view":[10],"Subspace":[11],"Clustering":[12],"(FSSMSC)":[13],"method,":[14],"novel":[16],"solution":[17],"to":[18,36,102,120,139],"the":[19,37,40,69,74,104,109,112,141],"high":[20],"computational":[21,31],"complexity":[22,34],"commonly":[23],"found":[24],"in":[25],"existing":[26],"approaches.":[27],"FSSMSC":[28,150],"features":[29],"linear":[30,59],"space":[33],"relative":[35],"size":[38],"of":[39,61,90,149,160],"data.":[41,126],"The":[42,145],"method":[43,110],"generates":[44],"consensus":[46],"anchor":[47,70,114],"graph":[48,71,115],"across":[49],"all":[50],"views,":[51],"representing":[52],"each":[53],"data":[54],"point":[55],"as":[56],"sparse":[58],"combination":[60],"chosen":[62],"landmarks.":[63],"Unlike":[64],"traditional":[65],"methods":[66],"that":[67,86],"manage":[68],"construction":[72],"label":[75],"propagation":[76],"process":[77],"separately,":[78],"paper":[80],"proposes":[81],"unified":[83,105],"optimization":[84,106],"model":[85],"facilitates":[87],"simultaneous":[88],"learning":[89],"both.":[91],"An":[92],"effective":[93],"alternating":[94],"update":[95],"algorithm":[96],"with":[97],"convergence":[98],"guarantees":[99],"is":[100,133],"proposed":[101],"solve":[103],"model.":[107],"Additionally,":[108],"employs":[111],"obtained":[113],"landmarks'":[117],"low-dimensional":[118,122,137],"representations":[119,123,138],"deduce":[121],"for":[124],"raw":[125],"Following":[127],"this,":[128],"straightforward":[130],"clustering":[131,143],"approach":[132],"conducted":[134],"on":[135,156],"these":[136],"achieve":[140],"final":[142],"results.":[144],"effectiveness":[146],"efficiency":[148],"are":[151],"validated":[152],"through":[153],"extensive":[154],"experiments":[155],"multiple":[157],"benchmark":[158],"datasets":[159],"varying":[161],"scales.":[162]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4402386926","counts_by_year":[],"updated_date":"2025-04-23T22:07:23.630120","created_date":"2024-09-10"}